科学政策
第一天项目

建立一个由复合管的国家网络,以减少温室气体排放

05.22.23 | 9 min read | Text by Stuart Levenbach, PhD & Wilson Leong

概括

65,000 miles of pipeline: that’s the distance that may be necessary to achieve economy-wide net-zero emissions by 2050, according to a Princeton Universitystudy。The United States is on the verge of constructing a vast network of pipelines to transport hydrogen and carbon dioxide, incentivized by the Infrastructure Investment and Jobs Act and the Inflation Reduction Act. Yet the lifecycle emissions generated by a typical steel pipeline is 27.35 kg carbon dioxide eq per ft1。这意味着65,000英里将导致近940万兆吨的二氧化碳等式(等于超过每年200万辆乘用车) produced just from steel pipeline infrastructure alone.

Pipelines made from composite materials offer one pathway to lowering emissions. Composite pipe is composed of multiple layers of different materials—typically a thermoplastic polymer as the primary structural layer with reinforcing materials such as fibers or particulate fillers to increase strength and stiffness. Some types have lifecycle emissions that are nearly one-third less than typical steel pipeline. Depending on the application, composite pipelines can be safer and less expensive. However, the process under Pipeline and Hazardous Materials and Safety Administration (PHMSA) to issue permits for composite pipe takes longer than steel, and for hydrogen and supercritical carbon dioxide, the industry lacks regulatory standards altogether. Reauthorization of the Protecting Our Infrastructure of Pipelines and Enhancing Safety (PIPES) Act offers an excellent opportunity to review the policies concerning new, less emissive pipeline technologies.

Challenge and Opportunity

Challenge

美国正处于清洁能源建设繁荣的边缘,远远超出了风能和太阳能,包括利用氢和碳捕获的基础设施。该泵在《基础设施投资和就业法案》中的示范项目或“枢纽”中获得了210亿美元的准备,并在《降低通货膨胀法案》中获得了70亿美元的示威项目和至少3690亿美元的税收抵免。国会认识到,管道是关键的组成部分,并根据《二氧化碳运输基础设施融资与创新法》(CIFIA)提供了21亿美元的贷款和赠款。

美国被管道纵横交错。大约330万英里钢管管道主要是每年传达数万亿立方英尺的天然气和数百吨液体石油产品。少得多5,000 miles用于运输二氧化碳,仅用于1,600英里are dedicated to hydrogen. Research suggests the existing pipeline network is nowhere near what is needed. According to Net Zero America, approximately 65,000 miles of pipeline will be needed to transport captured carbon dioxide to achieve economy-wide net zero emissions in the United States by 2050. The study also identifies a need for several thousand miles of pipelines to transport hydrogen within each region.

用钢制成管道是一个碳密集型过程,钢制造业的一般情况是7%至9%of global greenhouse gas emissions. There are ongoing efforts to lower emissions generated from steel (i.e., “green steel”) by being more energy efficient, capturing and storing emitted carbon dioxide, recycling scrap steel combined with renewable energy, and using low-emissions hydrogen. However, cost is a significant challenge with many of these mitigation strategies. The estimated cost of transitioning global steel assets to净零到2050年,兼容技术还为2000亿美元,除了基线平均值每年310亿美元简单地满足需求不断增长。

机会

考虑到实现净零未来所需的大量管道网络,复合管道的扩展使用为美国提供了降低碳排放量的重要机会。复合材料对腐蚀具有高度耐药性,重量更低,更柔软,并且具有改善的流量。这意味着,由复合材料制成的管道具有更长的使用寿命,并且比钢管管道需要更少的维护。复合管的安装速度可以快四倍,需要安装人工三分之一,并且运营成本大大降低。2随着技术的进步使这些材料更可靠和成本效益,复合管的使用将继续增长。

随着行业寻求提高其可持续性,复合管的使用也在不断扩大。我们对热塑性管进行了生命周期分析,该分析是由称为挤出的过程制成的,该过程涉及熔化热塑性材料,例如高密度聚乙烯或氯化物,然后迫使其通过模具迫使其创建连续管。然后可以将管子切成所需的长度,并将配件连接到末端以创建完整的管道。我们发现,来自热塑性管的生命周期排放量为6.83千克二氧化碳Eq/ft碳EQ/ft,比等效的钢管长度低约75%,钢管的生命周期排放量为27.35千克二氧化碳二氧化碳二氧化碳eq/ft。

These estimates do not include potential differences in leaks. Specifically, composite pipe has a continuous structure that allows for the production of longer pipe sections, resulting in fewer joints and welds. In contrast, metallic pipes are often manufactured in shorter sections due to limitations in the manufacturing process. This means that more joints and welds are required to connect the sections together, which can increase the risk of leaks or other issues. Further, approximately half of the steel pipelines in the United States are over 50 years old, increasing the potential for leaks and maintenance cost.3复合管的另一个优点是可以通过钢管道将其拉出,从而将老化的钢管道重新利用以运输不同的材料,同时还减少了对新的通行权和相关许可的需求。

尽管使用复合材料的优点,但尚未制定标准以允许安全许可运输超临界二氧化碳4和氢。在联邦一级,管道安全由运输部的管道和危险材料管理(PHMSA)管理。5为了确保能源和其他危险材料的安全运输,PHMSA建立了国家政策,制定并执行标准,教育和进行研究以防止事件。有监管标准可以在钢管中运输超临界二氧化碳。6但是,在超临界液体,气体或亚临界液态状态下,没有复合管的标准来运输氢或二氧化碳。

Repurposing existing infrastructure is critical because the siting of pipelines, regardless of type, is often challenging. Whereas natural gas pipelines and some oil pipelines can invoke eminent domain provisions under federal law such as the Natural Gas Act or Interstate Commerce Act, no such federal authorities exist for hydrogen and carbon dioxide pipelines. In some states, specific statutes address eminent domain for carbon dioxide pipelines. These laws typically establish the procedures for initiating eminent domain proceedings, determining the amount of compensation to be paid to property owners, and resolving disputes related to eminent domain. However, current efforts are under way in states such asIowa限制使用国家当局授予杰出领域的二氧化碳管道。杰出领域的挑战强调了允许将现有管道重新利用以运输二氧化碳和氢的技术提供的机会。

Plan of Action

我们如何在同时使用较低的发射材料的同时,如何建立一个庞大的二氧化碳和氢管道网络?

建议1.制定安全标准,以使用复合管运输氢和超临界二氧化碳。

PHMSA,行业和有兴趣的利益相关者应共同努力制定安全标准,以使用复合管运输氢和超临界二氧化碳。没有标准,就没有允许使用复合管的途径。这项合作可能发生在PHMSA最近宣布更新其运输二氧化碳标准的背景下,这是针对2020年事件进行的Sartartia, MS

理想情况下,可以使用PHMSA的正常过程而不是特殊许可(例如49CFR§195.8)发出许可证。制定标准需要几年的时间,因此启动标准设定的过程至关重要,以便可以将复合管用于能源资助的氢枢纽和碳捕获示范项目。

Europe is ahead of the United States in this regard, as the classification companyDNV目前正在进行一个联合行业项目,以审查使用热塑性管运输氢气的成本和风险。这项工作将为欧盟的监管机构提供通知,他们目前正在修改氢基础设施的标准。欧洲清洁氢联盟最近采用了“氢标准化路线图”,该联盟明确建议为非金属管设定标准。在可行的范围内,如果标准相似,它将受益于美国产品的出口市场。

建议2.简化改装钢管道的许可过程。

国会应通过根据《国家环境政策法》(NEPA)制定立法绝对排斥来简化钢管的改造。NEPA要求联邦机构评估可能对环境产生重大影响的行动。分类排除(CES)是确定没有重大环境影响的行动类别,因此不需要环境评估(EA)或环境影响声明(EIS),然后才能进行。可以在几天内处理CE,从而加快对合格行动的审查。

The CE process allows federal agencies to avoid the time and expense of preparing an EA or EIS for actions that are unlikely to have significant environmental effects. CEs are often established through agency rulemaking but can also be created by Congress as a “legislative CE.” Examples include minor construction activities, routine maintenance and repair activities, land transfers, and research and data collection. However, even if an action falls within a CE category, the agency must still conduct a review to ensure that there are no extraordinary circumstances that would warrant further analysis.

考虑到要部署清洁技术基础设施的紧迫性,国会应授权联邦机构采用分类排除,其中使用复合管对钢管进行了翻新。在这种情况下,该项目正在使用现有的管道通行权,并且应很少有其他环境影响。如果存在任何特殊情况,例如环境影响风险的实质性变化,联邦机构将能够根据EA或EIS评估该项目。CE不能消除对安全标准和其他适用的实质性法律的审查,而只是将NEPA下的程序分析恰好大小。

建议3.探索在《管道重新授权法》中改善复合管的政策框架的机会。

Both of the aforementioned ideas should be considered as Congress initiates its reauthorization of the Protecting Our Infrastructure of Pipelines and Enhancing Safety (PIPES) Act of 2020. Among other improvements to pipeline safety, the PIPES Act reauthorized PHMSA through FY2023. As Congress begins work on its next reauthorization bill for PHMSA, it is the perfect time to review the state of the industry, including the potential for composite pipe to accelerate the energy transition.

建议4.在资助演示项目时,请考虑建筑材料的嵌入式排放。

清洁能源示范办公室在评估资金项目时应考虑建筑材料的嵌入式排放。有计划考虑嵌入建筑材料排放的申请人可以在选择过程中获得额外的重量。

Recommendation 5. Support research and development of composite materials.

Composite materials offer advantages in many other applications, not just pipelines. The Office of Energy Efficiency and Renewable Energy (EERE) should support research to further enhance the properties of composite pipe while improving lifecycle emissions. In addition to ongoing efforts to lower the emissions intensity of steel and concrete, EERE should support innovation in alternative, composite materials for pipelines and other applications.

Conclusion

最近的立法将在清洁能源基础设施中引发下一代的建设,资金还创造了一个机会,以较低的温室气体排放量来部署建筑材料。这很重要,因为使用高放机流程构建大量管道网络会削弱立法的目标。但是,通过未提供使用复合材料的途径,监管代码仍然是一种障碍。PHMSA和行业应开始讨论以创建必要的安全标准,国会应与行业和监管机构合作,在改装钢管管道时简化NEPA流程。随着美国开始建造氢和碳捕获,利用和存储网络,对管道的重新授权为大大降低排放提供了绝佳的机会。

经常问的问题
How did you calculate a lifecycle analysis (LCA) for composite pipe?

We compared two types of pipes: 4” API 5L X42 metallic pipe vs. 4” Baker Hughes non-metallic next generation thermoplastic flexible pipe. The analysis was conducted using FastLCA, a proprietary web application developed by Baker Hughes and certified by an independent reviewer to quantify carbon emissions from our products and services. The emission factors for the various materials and processes are based on the ecoinvent 3.5 database for global averages.


  • 挠性管生产从2020年的数据production year and represents transport, machine, and energy usage at the Baker Hughes’ manufacturing plant located in Houston, TX.
  • 所有用于弹性管道的原材料和能源输入都直接来自工程和工程人员的工程和工厂制造数据,并通过工程和制造人员进行了验证,并代表实际使用以制造柔性管道。
  • All of the data for metallic pipe production is from API 5L X42 schedule 80 pipe specifications and represent transport from Alabama and energy usage for production from global averages.
  • 所有用于热滚动钢的原材料和能量输入均根据3.5个数据库发射因子计算出来。所有相关的生产步骤和过程均已建模。
  • 所有次要过程均来自Simapro 9.0.0.30中应用的Ecoinvent 3数据库(截至2018年11月的3.5版)。
  • 结果是使用IPCC 2013 GWP 100A(IPCC AR5)计算的。
使用复合管运输氢和二氧化碳的安全风险是什么?

与钢管类似,使用复合管运输氢和二氧化碳会带来某些安全风险,必须仔细管理和缓解:


  • Hydrogen gas can diffuse into the composite material and cause embrittlement, which can lead to cracking and failure of the pipe.
  • 管道中使用的复合材料必须与氢和二氧化碳兼容。不兼容会导致渗透导致管道降解,从而导致泄漏或破裂。
  • Both hydrogen and carbon dioxide are typically transported at high pressure, which can increase the risk of pipe failure due to stress or fatigue.
  • Carbon dioxide can be corrosive to certain metals, which can lead to corrosion of the pipe and eventual failure.
  • 氢是高度易燃的,可以在发生点火源(例如火花或热量)的情况下点燃。

为了减轻这些安全风险,必须制定适当的测试,检查和维护程序。此外,应遵循适当的处理和运输方案,包括严格遵守压力和温度限制以及防止点火源的预防措施。最后,应制定和实施应急响应计划,以解决运输过程中可能发生的任何事件。

需要更新的现有相关标准是什么?

API规范15s,可启动的钢筋塑料管道,覆盖在陆上应用中使用柔性复合管。该标准不涉及二氧化碳的运输,尚未纳入PHMSA的法规。


API Specification 17J,无需柔性管的规范,涵盖了在离岸应用中使用柔性复合管的使用。与15s相似,它不能解决二氧化碳的运输,也没有纳入PHMSA的法规。

相同的建议适用于高密度聚乙烯(HDPE)管道吗?

HDPE管道通常用于供水,排水系统,燃气管道和工业流程等应用中,就柔韧性,易于安装和低维护要求而言,复合管具有相似的优势。它可以组装以创建无缝的接头,从而降低泄漏的风险。它也可以用作每个API规格15LE的衬套进行改造的钢管。


PHMSA已批准HDPE管,用于在49 CFR第192部分中运输天然气。但是,典型的工作压力(例如100 psi)明显低于复合管。与复合管类似,尽管HDPE管的较低压力极限使其不适用于碳捕获和存储,但没有用于氢和二氧化碳的运输标准。

1
美国Talanki和w·梁”,温室气体的排放(GHG) Life Cycle Assessment for Comparing Non-Metallic vs Metallic Pipe Products” (Baker Hughes, 2021). This study contains proprietary information. An independent verification of the study is available athttps://www.bakerhughes.com/company/corporate-responsibility/download-center。
2
贝克·休斯(Baker Hughes),“通过使用复合管减少资本支出和OPEX来保护您的利润:石油和天然气行业如何在不损害质量的情况下降低基础设施生命周期成本”,白皮书,2023年2月25日访问http://www.thermoflexpipe.com。请注意,这种类型的复合管是载管的,因此可能无法代表所有复合管。
3
PHMSA, “The State of the National Pipeline Infrastructure: A Preliminary Report” (U.S. Department of Transportation, 2011).
4
Supercritical carbon dioxide is a state of carbon dioxide where it is pressurized to a point where it becomes a fluid. It provides significant advantages relative to other states such as having a lower viscosity, thereby allowing for easier flow.
5
PHMSA shares oversight of certain offshore pipeline facilities with the Bureau of Safety and Environmental Enforcement. Under the terms of a December 2020 Memorandum of Understanding between the two agencies, PHMSA is responsible for “all OCS pipelines beginning downstream of the point at which operating responsibility transfers from a producing operator to a transporting operator, or downstream of the last valve on the last production facility on the OCS for pipelines that cross into State waters.
6
See 49 CFR part 195.
金博宝更改账户
See all金博宝更改账户
科学政策
第一天项目
政策
建立一个由复合管的国家网络,以减少温室气体排放

到2050年,美国将需要65,000英里的管道才能实现净零排放。这是拜登政府可以扩大低排放,复合材料来支持零净愿景的方式。

05.22.23 | 9 min read
read more
科学政策
第一天项目
政策
Accelerating Biomanufacturing and Producing Cost-Effective Amino Acids through a Grand Challenge

氨基酸是必不可少的,但对于大规模生物生产而言是昂贵的投入。联邦资金可以激励可扩展的产量,将这些成本减少一半。

05.15.23 | 14 min read
read more
科学政策
第一天项目
政策
改变按需医疗氧基础设施以提高访问和死亡率

Investing in oxygen as a utility through on-demand infrastructure can improve access and mortality rates globally. Healthcare experts propose how an international coalition led by USAID can transform the medical oxygen marketplaces of low- and middle-income countries to ensure every patient has the oxygen they need.

05.01.23 | 17 min read
read more
科学政策
博客
Where There’s Smoke, There’s Fire: Using Effective Communication To Bridge the Gap Between Wildfire Science and Policy

在一个火灾季节转向火年的环境中,北美各地的夏季天空充满了远至另一个海岸的野火烟雾,对科学准确的野外火灾政策的需求从未如此大。在过去的几个月中,Compass Science Communication一直与[…]合作合作

04.24.23 | 5分钟阅读
read more