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Abstract

In preparation for the 2020 decennial census, the Census Bureau asked

JASON to examine the scientific validity of the vulnerability that the Cen-

sus Bureau discovered in its traditional approach to Disclosure Avoidance,

the methods used to protect the confidentiality of respondent data. To ad-

dress this vulnerability, the Census Bureau will employ differential privacy,

a mathematically rigorous formal approach to managing disclosure risk. JA-

SON judges that the analysis of the vulnerability performed by Census is

scientifically valid. The use of Differential Privacy in protecting respondent

data leads to the need to balance statistical accuracy with privacy loss. JA-

SON discusses this trade-off and provides suggestions for its management.
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1 EXECUTIVE SUMMARY

A decennial population census of the United States will officially begin April 1,

2020. Under Title 13 of the US Code, the Bureau of the Census is legally obligated

to protect the confidentiality of all establishments and individuals who participate

in providing census data. In particular, Census cannot publish any information

that could be used to identify a participant.

Over the years, a large amount of personal data have become easily available

via online and commercial resources. It has also become much easier to analyze

large amounts of data using modern computers and data-science tools. This has

made it possible to breach the confidentiality protection promised to respondents

of studies and surveys. There have been several notable examples in which records

collected under pledges of confidentiality from a survey were linked with public

data resulting in the re-identification of the individuals participating in the survey.

In an exercise to evaluate the confidentiality protection of the census, the Census

Bureau discovered such a vulnerability exists for their data as well.

Using the individual responses from participants (known as microdata), the

Census Bureau produces a collection of tables that summarize population counts,

age distributions, etc., for various levels of geographic resolution from the whole

nation down to census blocks. A variety of approaches have been used by Census

in the past to prevent re-identification. In addition to the removal of direct iden-

tifiers, Census applies geographic thresholding, top and bottom coding, swapping

and other methods of obfuscation to hide identifying characteristics. It was previ-

ously thought to be computationally intractable to reconstruct the microdata from

the published tabular summaries. But in 2018, applying modern optimization

methods along with relatively modest computational resources, Census succeeded

in reconstructing, from the published 2010 census data, geographic location (cen-

sus block), sex, age, and ethnicity for 46% of the US population (142 million

people). By linking the reconstructed microdata with information in commercial
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databases, Census was then able to match and putatively re-identify 45% of the

reconstructed records. Of these putative re-identifications, 38% were confirmed.

This corresponds to 17% of the US population in 2010 (a total of over 52 mil-

lion people). Such a re-identification rate exceeds that obtained in a previous

internal Census assessment by four orders of magnitude. Public release of these

re-identifications would constitute a substantial abrogation of the Census’ Title 13

confidentiality obligations.

In view of these developments, Census has proposed the application of for-

mal privacy methods, in particular, the use of Differential Privacy (DP). DP, in-

troduced in 2006, has as its goal the prevention of learning about the participation

of an individual in a survey by adding tailored noise to the result of any query on

data associated with that survey. DP provides a set of algorithms used to compute

statistical information about a dataset (e.g. counts, histograms, etc.), but infuses

those statistics with tailored noise, making it possible to publish information about

a survey while limiting the possibility of disclosure of detailed private information

about survey participants.

A number of features make DP an attractive approach for protection of con-

fidentiality for the 2020 census and beyond. Notably, privacy loss (in a technical

sense) can be rigorously quantified via a privacy-loss parameter. In addition, there

are techniques to create synthetic data such that subsequent queries will not cause

further confidentiality loss provided such queries do not access the original data.

Finally, confidentiality would degrade in a controlled way should it prove neces-

sary to re-access the original data in order to publish further tabulations. Census

proposes to use this approach by adding noise to the tabular summaries it tradi-

tionally publishes and then using these to reconstruct synthetic census microdata.

Both the noised tabular summaries and the synthetic microdata could then be pub-

licly released.

Once the differentially private tabulations and the synthetic data are pro-

duced, the use of DP methods offers a mathematically rigorous guarantee that any
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further analysis of the released data preserves the original level of confidentiality

protection. However, one drawback of such approaches is that the applied noise

will degrade the accuracy of various tabulations and statistical analyses of the data,

particularly those associated with small populations. Census data are used by a

large number of government, academic, business, and other stakeholders. Census

is therefore compelled to make an explicit trade-off between the accuracy of its

data releases and the privacy of respondents.

Census charged JASON with the following three tasks:

1. Examine the scientific validity of the vulnerability that the Census Bureau

discovered in the methods that it has historically used to protect the confi-

dentiality of respondent data when preparing publications;

2. Evaluate whether the Census Bureau has properly assessed the vulnerability

as described above;

3. Provide suggestions to represent the trade-offs between privacy-loss and

accuracy to explicitly represent user choices.

JASON has not attempted to duplicate the reconstruction of census micro-

data as it does not have access to that data, nor to data from commercial mar-

keting databases. JASON has, however, confirmed via database simulation that

such an attack is possible; JASON concludes that, provided one publishes a suf-

ficient number of tabular summaries, there are multiple approaches using modern

optimization algorithms to reconstruct the database from which the summaries

originated with high probability. This creates a significant risk of disclosure of

census data protected under Title 13.

Census plans to release some data without noise, most importantly, state

populations for the apportionment of Congressional representatives. In addition,

Public Law 94-171 requires that Census provide the states with small-area data

necessary to perform legislative redistricting for both Federal and State electoral
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districts. The Census has set up a voluntary program in which state officials de-

fine the geographic areas for which they wish to receive census data. While only

population data are legally mandated, Census has traditionally also provided other

demographic data such as race, ethnicity and voting age populations. For expe-

dience, states have simply asked for these data at the finest geographical resolu-

tion (census blocks) and have then used the block populations to infer population

counts for larger geographical areas such as legislative districts. The proposed

creation of differentially private census tabulations will result in block-level pop-

ulations that differ from the original census enumeration due to the infused noise.

Releases of exact counts (known as invariants) are technically violations of DP in

principle and degrade the privacy guarantee, although to what extent in practice

remains a research issue. There arises, then, a tension between the obligations

under PL 94-171 to release population data for legislative purposes and the re-

quirements of Title 13 to protect confidentiality.

For large populations, for example at the national, state, or even in many

cases the county level, using DP does not unduly perturb the accuracy of statis-

tical queries on the data provided the privacy-loss parameter is not set too low

(implying the infusion of a large amount of noise). This is important for diverse

users of census data (demographers, city planners, businesses, social scientists

etc.). But as the size of the population under consideration becomes smaller, the

contributions from injected noise will more strongly affect such queries. Note that

this is precisely what one wants for confidentiality protection, but is not desirable

for computation of statistics for small populations. Thus there is also a tension

between the need to protect confidentiality and the aim to provide quality statisti-

cal data to stakeholders. While the latter is not legally mandated for Census, it is

aligned with the Office of Management and Budget’s policy directive to agencies

that produce useful governmental statistics, and Census has traditionally been a

key supplier of such data through its various published products.

The trade-off between confidentiality and statistical accuracy is reflected in

the choice of the DP privacy-loss parameter. A low value increases the level of
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injected noise (and thus also confidentiality) but degrades statistical calculations.

Another factor that also influences the choice of privacy-loss parameter is the

number and geographical resolution of the tables released. For example, if no

block-level data were publicly released, a re-identification “attack” of the sort

described above presumably would become more difficult, perhaps making it fea-

sible to add less noise and thus publish tables at a higher value of the privacy loss

parameter than what would be required if block level tables were published. A

re-identification attack, of the sort that originally led to the conclusions that more

rigorous and effective confidentiality protections were required, has not been per-

formed on microdata reconstructed from differentially private tabulations. Such

an analysis is needed to gauge the level of protection needed.

Depending on the ultimate level of privacy protection that is applied for the

2020 census, some stakeholders may well need access to more accurate data. A

benefit of differential privacy is that products can be released at various levels of

protection depending on the level of statistical accuracy. The privacy-loss parame-

ter can be viewed as a type of adjustable knob by which higher settings lead to less

protection but more accuracy. However, products publicly released with too low

a level of protection will again raise the risk of re-identification. One approach is

to use technology (e.g. virtual machines, secure computation platforms etc.) to

provide protected data enclaves that allow access to census data at lower levels of

privacy protection to trusted stakeholders. Inappropriate disclosure of such data

could still be legally enjoined via the use of binding non-disclosure agreements

such as those currently in Title 13. This idea is similar to the concept of “need to

know” used in environments handling classified information.

Finally, it will be necessary to engage and educate the various communities

of stakeholders so that they can fully understand the implications (and the need

for) DP. These engagements should be two-way conversations so that the Census

Bureau can understand the breadth of requirements for census data, and stake-

holders can in turn more fully appreciate the need for confidentiality protection in

the present era of “big data”, and perhaps also be reassured that their statistical
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needs can still be met.

1.1 Findings

1.1.1 The re-identification vulnerability

• The Census has demonstrated the re-identification of individuals using the

published 2010 census tables.

• Approaches to disclosure avoidance such as swapping and top and bottom

coding applied at the level used in the 2010 census are insufficient to prevent

re-identification given the ability to perform database reconstruction and the

availability of external data.

1.1.2 The use of Differential Privacy

• The proposed use by Census of Differential Privacy to prevent re-identifi-

cation is promising, but there is as yet no clear picture of how much noise

is required to adequately protect census respondents. The appropriate risk

assessments have not been performed.

• The Census has not fully identified or prioritized the queries that will be

optimized for accuracy under Differential Privacy.

• At some proposed levels of confidentiality protection, and especially for

small populations, census block-level data become noisy and lose statistical

utility.

• Currently, Differential Privacy implementations do not provide uncertainty

estimates for census queries.
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1.1.3 Stakeholder response

• Census has not adequately engaged their stakeholder communities regard-

ing the implications of Differential Privacy for confidentiality protection

and statistical utility.

• Release of block-level data aggravates the tension between confidentiality

protection and data utility.

• Regarding statistical utility, because the use of Differential Privacy is new

and state-of-the-art, it is not yet clear to the community of external stake-

holders what the overall impact will be.

1.1.4 The pace of introduction of Differential Privacy

• The use of Differential Privacy may bring into conflict two statutory re-

sponsibilities of Census, namely reporting of voting district populations and

prevention of re-identification.

• The public, and many specialized constituencies, expect from government

a measured pace of change, allowing them to adjust to change without ex-

cessive dislocation.

1.2 Recommendations

1.2.1 The re-identification vulnerability

• Use substantially equivalent methodologies as employed on the 2010 census

data coupled with probabilistic record linkage to assess re-identification risk

as a function of the privacy-loss parameter.

• Evaluate the trade-offs between re-identification risk and data utility arising

from publishing fewer tables (e.g. none at the block-level) but at larger

values of the privacy-loss parameter.
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1.2.2 Communication with external stakeholders

• Develop and circulate a list of frequently asked questions for the various

stakeholder communities.

• Organize a set of workshops wherein users of census data can work with

differentially private 2010 census data at various levels of confidentiality

protection. Ensure all user communities are represented.

• Develop a set of 2010 tabulations and microdata at differing values of the

privacy-loss parameter and make those available to stakeholders so that they

can perform relevant queries to assess utility and also provide input into the

query optimization process.

• Develop effective communication for groups of stakeholders regarding the

impact of Differential Privacy on their uses for census data.

• Develop and provide to users error estimates for queries on data filtered

through Differential Privacy.

1.2.3 Deployment of Differential Privacy for the 2020 census and beyond

• In addition to the use of Differential Privacy, at whatever level of confi-

dentiality protection is ultimately chosen, apply swapping as performed for

the 2010 census so that no unexpected weakness of Differential Privacy as

applied can result in a 2020 census with less protection than 2010.

• Defer the choice of the privacy-loss parameter and allocation of the detailed

privacy budget for the 2020 census until the re-identification risk is assessed

and the impact on external users is understood.

• Develop an approach, using real or virtual data enclaves, to facilitate access

by trusted users of census data with a larger privacy-loss budget than those

released publicly.
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• Forgo any public release of block-level data and reallocate that part of the

privacy-loss budget to higher geographic levels.

• Amid increasing demands for more granular data and in the face of conflict-

ing statutory requirements, seek clarity on legal obligations for protection

of data.
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2 INTRODUCTION

2.1 Overview of the Census

The US decennial census, codified in law through the US Constitution has taken

place every 10 years since 1790. The 24th such census will take place in 2020. The

authority to collect and analyze the information gathered by the Census Bureau

originates in Title 13 of the US Code enacted into law in 1954. Title 13 Section

9 of the US code mandates that neither the Secretary of Commerce or any other

employee or officer of the Dept. of Commerce may

“... use the information furnished under the provisions of this

title for any purpose other than the statistical purposes for which it is

supplied; or make any publication whereby the data furnished by any

particular establishment or individual under this title can be identified;

or permit anyone other than the sworn officers and employees of the

Dept or bureau or agency thereof to examine the individual reports.”

Census employees are sworn to uphold the tenets of Title 13 and there are

strict penalties including fines and imprisonment should there be any violation. To

ensure the mandate of Title 13 is upheld, the Census has traditionally used what

are termed Disclosure Avoidance techniques on its publicly released statistical

products. The particular approaches used by the Census for Disclosure Avoidance

have evolved over the years. A short overview is contained in this report.

Surveys have long been an invaluable tool in determining policy and in the

performance of social science and demographic research. In many cases such sur-

veys require respondents to reveal sensitive information under the promise that

such information will remain confidential. Traditionally, protection from disclo-

sure was accomplished by anonymizing records. In this way, statistical analyses

on issues of public importance could be accomplished while protecting the iden-

tity of the respondent. Over time however, the availability of public external data
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and the increase in capability of data analytics has made protecting confidential

data a challenge. By linking information in one data set with that of another

containing some intersecting information (known as a record-linkage attack) it is

sometimes possible to connect an anonymous record containing confidential in-

formation with a public record and thus identify the respondent. This is called

re-identification of previously de-identified data. A number of newsworthy re-

identifications have been accomplished in this way. Several approaches have been

put forth to make such record linkage attacks harder (see e.g., [32]) but to date

none of these have proven to be sufficiently robust to attack.

In 2016, analysts at the Census realized that, even though the Census pub-

lishes for the most part tabular summaries of its surveys, enough information could

be gleaned from the results to correctly reconstruct a substantial fraction of the de-

tailed survey responses. By linking this information with commercial marketing

databases, the names of the respondents could be ascertained, a putative violation

of Title 13.

In response, Census has proposed to utilize methods of formal privacy de-

veloped and analyzed in the cryptography community; Census proposes to use

the methods of Differential Privacy (DP) [8] to secure the 2020 Census. Census

requested a JASON study as part of the process of verifying their assessment of

disclosure risk as well as assessing the proposed use of formal privacy approaches.

Census’ charge to JASON was as follows:

• JASON will examine the scientific validity of the vulnerability that the Cen-

sus Bureau discovered in the methods it has historically used to protect the

confidentiality of respondent data when preparing publications.

• Risk assessment: has the Census Bureau properly assessed the vulnerabil-

ity?

• Implementing formal privacy requires making explicit choices between the

accuracy of publications and their associated privacy loss; users always
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want more accuracy, but the Census Bureau must also safeguard the re-

spondents’ privacy. How do we represent the trade-offs between privacy

loss and accuracy to explicitly represent user choices? Are there other con-

ceptual approaches we should try?

2.2 Overview of the Study

JASON was introduced to the relevant issues through a set of presentations listed

in Table 2-1. The briefers were experts both internal and external to the Census

Bureau in areas such as disclosure avoidance, demography, and applications of

census data such as redistricting. These talks were of high quality and were in-

strumental in educating JASON on these issues. In addition, members of JASON

participating in the study were sworn into Title 13 allowing them to be briefed

on information protected under this statute and providing JASON with important

insights into the details of 2020 Census and particularly the Disclosure Avoidance

system based on DP proposed for 2020. Finally, Census provided with JASON

with a rich set of reference materials, some protected under Title 13. Details asso-

ciated with those materials protected under Title 13 are not included in this report.

2.3 Overview of the Report

In Section 3, we provide a brief overview of the census process, the informa-

tion that Census is mandated to provide and the associated timeline. We also

briefly review the methods that were used for Disclosure Avoidance in the past.

In Section 4, we review the work that led Census to conclude that the previous

approaches to Disclosure Avoidance were inadequate given the increasing avail-

ability of large datasets of personal information. In this context, we discuss the

seminal work of Dinur and Nissim [5] leading to what is now called the Funda-

mental Law of Information Recovery. We also describe some experiments asso-
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Speaker Title Affiliation
Ron Jarmin Overview of the Dual Mandate and Legal and Historical 

Background for Disclosure Avoidance
US Census

Victoria Velkoff Proposed 2020 Census Data Products US Census
James Whiteh r e Overview of Redistricting Data Products US Census
John Abowd The Vulnerability in the 2010 Census Disclosure Avoidance 

System (DAS) 
US Census

Ashwin 
Machanavajjhala 

Interpreting Differential Privacy Duke University

Dan Kifer Design Principles of the TopDown Algorithm Penn State University
Phil Leclerc Empirical Analysis of Utility-Privacy Trade-offs for the TopDown 

Algorithm
US Census

William Sexton Disclosure Avoidance At-Scale and Other Outstanding Issues US Census
Cynthia 
Hollingsworth

How 2020 Census Data Products are Prepared US Census

Rachel Marks How 2020 Census Data Products Reflect Data User Feedback US Census

Ken Hodges How 2020 Census Products will be used by Demographers Claritas

Justin Levitt Uses of 2020 Census Redistricting Data Loyola University

Tommy Wright Suitability Assessment of Data Treated by DA Methods for 
Redistricting

US Census

Kamalika Chaudhuri Formal Privacy and User-Imposed Constraints UCSD
Salil Vadhan Formal Privacy and Data Analysis, Including Invariants Harvard
Dave van Riper Differential Privacy and the Decennial Census (via VTC) U. Minnesota

Danah Boyd Video Teleconference Microsoft
Jerry Reiter Video Teleconference Duke University

 

Table 2-1: Briefers for JASON Census study.

ciated with the Dinur-Nissim work that underscore the conclusions of that work.

In Section 5, we describe briefly the proposed use of DP as a means of protect-

ing sensitive Census data. DP grew out of the work described above by Dinur

and Nissim and then extended by Dwork and her collaborators [7]. DP makes

possible statistical queries regarding a dataset to be performed while offering a

rigorous bound on the amount one learns about a dataset if one record is deleted,

added or replaced. Note that this is not, strictly speaking a guarantee of disclosure

avoidance but it does provide in a rigorous way the likelihood of a record linkage

attack. It does this by adding specially calibrated noise to the result of a specific

query made on the dataset. For queries that involve large populations, the addi-

tion of noise does not unduly perturb the statistical accuracy of the query. But as

a query focuses on smaller and smaller populations the noise will make it increas-
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ingly difficult to infer individual characteristics. An attractive feature of DP is that

the level of protection is tunable via the setting of a privacy loss parameter. The

value set for the privacy loss parameter is meant to be a policy decision.

In Section 6, we discuss the results of some of the early work performed by

Census on applying DP to census data. Census proposes to use DP to process the

sensitive microdata and create the standard tabular summaries. Noise will then

be added to these summaries to make them differentially private. The assessment

of the privacy loss budget to be used has not yet been performed. Census will

then use the same reconstruction algorithms it applied on the 2010 census data on

the noised tables. This will create synthetic microdata that, in principle, should

be safe to publish openly. We discuss some early applications of this approach

and the nature of the synthetic data it produces. The proposed use of DP will

lead to tension between protecting privacy while providing accurate demographic

data for activities like redistricting. In Section 7 we propose some approaches

for managing this trade-off. Finally in Section 8 we summarize our findings and

recommendations.
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3 CENSUS PROCESS

In this section we provide a brief overview of the main products that the Census

provides as well as the geographic hierarchy that Census has established to collect

the relevant respondent data. We also cover the approach the Census has used to

process and summarize the required data. Finally, we discuss the evolving need

for preservation of the confidentiality of Census data.

3.1 Census Geographical Hierarchy

The Census organizes the US population via a geographic hierarchy shown in

Figure 3-1. At the top of this hierarchy are the national boundaries of the United

States and Puerto Rico. Within each state, Census further subdivides the popu-

lation according to county of residence. Counties are then further divided into

tracts, block groups, and finally the lowest gradation of Census geography, the

Census block. Census also surveys the households in each block and counts for

example the number of residents, whether the resident owns or rents etc. Cen-

sus also collects data for what are known as Group Quarters. Examples of these

are dormitories, prisons, etc. The designations in Figure 3-1 of nation, region,

state, county, tracts, block groups, and finally census blocks is called the “central

spine" of the census geographic hierarchy. Off this spine are also indicated other

important state and local divisions. For these, Census provides geographies that

can then be used to determine counts in these regions off the spine. These Census

geographies inform the placement of Census blocks so that the counts in these

areas can be performed from Census block data.

The distribution of population and the number of households in a census

tract, block group or block varies greatly across the nation. A map of the popu-

lation density from 2010 census data is shown in Figure 3-2. As can be seen, the

population density varies from thousands of people per square mile as for exam-

ple in areas like New York City or Los Angeles down to less that ten people per
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Figure 3-1: The geographical hierarchy used by Census in organizing its various

surveys [38].

square mile in states such as Nevada. This diversity in the number of residents and

number of households in various regions is one of the reasons Census must work

to protect respondent information. In many cases, because of the uniqueness of

a given area, it may be possible to identify census respondents. For example, in

Figure 3-3 we display graphical representations of the distribution of population

and number of households for the country in the form of Violin plots. As can

be seen, there is wide variability in both population and number of households

even at the census block level. Census blocks are comprised for the most part of

roughly several hundred people, but in densely populated areas there are outliers

with several thousand people; there is a similar picture for the number of house-

holds in a block. Block groups are larger consisting of typically a few thousand
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Figure 3-2: Map of population density across the United States from the 2010

census [35].

(a) (b)

Figure 3-3: Violin plots of population and households for census tracts, block

groups and blocks across the nation.
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(a) (b)

Figure 3-4: Violin plots of population and households for census tracts, block

groups and blocks in Iowa.

(a) (b)

Figure 3-5: Violin plots of population and households for census tracts, block

groups and blocks in Virginia.

people, but here also there is considerable variability. Census tracts may range

from population sizes of several hundred in very sparsely populated areas to up-

wards of 30,000 people. The distribution of population and number of households

for blocks, block groups and tracts in a state like Iowa is shown in Figure 3-4.

This should be contrasted with the distribution for Virginia shown in Figure 3-5.
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Finally it is important to note that census blocks do not always line up with

other regions of interest. An important example is the use of census data to de-

termine boundaries of both Congressional and State Legislative districts. Shown

in Figure 3-6 are the boundaries for two Congressional districts in Virginia. The

boundaries for the districts are shown in black. Census tracts are indicated in pur-

ple; census block groups are indicated in orange; and census blocks are indicated

in gray. The boundaries for tracts, groups and blocks are quite complex indicative

of geography but also complex population patterns. The boundaries of a Con-

gressional district (as well as a state legislative district) are determined through

a redistricting process that makes use of the information provided in the PL94

census product (discussed below).

3.2 Census Process and Products

By April 1, 2020 (Census Day) every home will receive a request to participate

in the 2020 census. This is the reference data for which respondents report where

they usually live. Census then also canvasses group quarters (dorms, etc.) in April.

Respondents indicate

• The number of people who live and sleep in a residence most of the time;

the homeless are asked to respond as well,

• The ownership status of the household,

• Sex of the residents of the household,

• Age of the residents and their date of birth,

• Whether the residents are of Hispanic origin, 1

• Race of the residents. This can be any or all of the 63 possible races as

designated by the Office of Management and Budget (OMB).

1Census refers to this information as the Hispanicity of the respondent.
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Figure 3-6: A map of two adjoining Congressional districts in Virginia. The black

lines indicate the district boundaries; the purple lines indicate boundaries of cen-

sus tracts; the orange lines indicate boundaries of block groups; the gray lines

indicate census blocks.
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The 2020 census will also collect information about US citizenship, but respon-

dents will not be asked to indicate their citizenship on the census questionnaire.

Instead this will be inferred from existing administrative records (e.g. Social Se-

curity Administration, Internal Revenue Service, etc.).

The respondent data are collected into a set of what Census terms microdata,

a list of records indicating the responses for each resident. As the responses are

received, records are de-duplicated and addresses are validated to insure that ev-

ery person is counted only once. This forms the Census Unedited File or CUF.

Where data are missing or inconsistent the Census employs a process known as

imputation and edits the CUF to produce the hundred percent detail file or HDF.

The final step is to identify those cells in the various tabular summaries where it

may be possible to identify respondents. Here the Census performs confidential-

ity edits and swaps households as discussed further in Section 3.3. From here the

various tabular summaries would be produced.

The Census Bureau through its surveys is responsible for the following prod-

ucts:
Apportionment count Apportionment is the process of dividing the 435 seats

of the House of Representative among the states. The count is based on the resi-

dent population (both citizen and non-citizen) of the 50 states. An example of the

result from the 2010 Census is shown in Figure 3-7 and must be delivered to the

President and Congress by December, 2020.

PL94-171 Public law 94-171 directs the Census Bureau to provide redistricting

data for the 50 states. This is the first product that must be produced after the ap-

portionment count is complete. Within a year of the 2020 census, the Bureau must

send data agreed-upon with the states to redraw state congressional and legislative

districts. To meet this requirement the Census has set up a voluntary program that

makes it possible for states to receive population estimates as well as racial and

Hispanicity distributions for areas relevant to the state congressional and legisla-

tive election process. An example of the tables provided in this product is shown
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Figure 3-7: A partial list of the apportionment count determining the number of

Congressional representatives from each state [39].

in Figure 3-8.

Summary File 1 Census produces a set of demographic profiles after the appor-

tionment and redistricting reports are complete. Summary File 1 (SF1) provides

population counts for the 63 OMB race categories and Hispanicity down to the

census block level. The report contains data from questions asked of all people

and about every housing unit and includes sex, age, race etc. The report consists

of 177 population tables, 58 housing tables down to the block level as well as

tabulations at the county and tract level. SF1 also provides special tabulations for

areas such as metropolitan regions, Congressional districts, school districts etc.

Summary File 2 Summary File 2 (SF2) contains cross-tabulations of informa-

tion on age, sex, household type, relationship, size for various races as well as

Hispanicity down to census tract level as long as the population in the tract ex-

ceeds 100 people.
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Figure 3-8: An example of a population table in the PL94-171 summary file [39].

American Community Survey The American Community Survey (ACS) is an

ongoing survey that has taken the place of the decennial long form. It is performed

annually. Each year Census contacts 3.5 million households and asks that they fill

out a detailed questionnaire. The survey is far more extensive than the decennial

census and gathers information about household makeup, type of housing, citi-
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zenship, employment etc. The information is used by a variety of stakeholders.

Perhaps most importantly, the data are used to guide the disbursement of federal

and state funds.

Public Use Microdata Sample Census provides edited samples of the micro-

data records that make up the decennial census and the ACS. These records are

assembled for areas that contain a minimum population of 100,000 (known as

PUMAs) and are edited to protect confidentiality. The PUMS provides only a

10% sample of a PUMA.

3.3 The Need for Disclosure Avoidance

It was realized early on that some disclosure avoidance was necessary as the pop-

ulation and housing densities of the United States are not distributed in a homoge-

neous manner. Owing to special aspects of a location it may be possible to identify

the particular person or persons living there. This would constitute a violation of

Title 13. For example, Liberty Island, the base of the Statue of Liberty has one

household listed, that of the Superintendent of the Monument and his wife [13].

Thus by focusing on this location and using external sources it should be possible

to identify the residents of that particular household. For this reason, the informa-

tion for this location is swapped with that of another household. A history of the

methods used in the past 50 years to effect disclosure avoidance is available in the

paper by McKenna [24]. We briefly describe these here to provide some context

for this report. The discussion below is not complete but illustrates the evolution

of the need to offer improved disclosure avoidance.

Long form data Long form census data have never been published at the low-

est level of census geography (presently census blocks). The long form data were

generally collected as part of the decennial census but in 2010 this data was rele-

gated to what is now called the American Community Survey (ACS) which began

JSR-19-2F 2020 Census 26 March 29, 2020



in 2005. The ACS only publishes data down to the block group level.

1970 Census The 1970 Census utilized suppression of whole tables as opposed

to suppression of cells. The choice to suppress was based on the number of people

in households in a given area. This approach had limitations in that tables with

complementary information were not suppressed making it possible in some cases

to infer the suppressed information. As indicated by McKenna, cells within an

original table could still show an estimate of 1 or 2 people.

1980 Census The 1980 Census retained the approach of the 1970 census but

modified it further by now suppressing tables with complementary information

and zeroing cells with counts of 1 or 2. However some population counts were not

suppressed at any level. In some cases, one could still infer complementary data

by subtracting data for various counties from state populations to infer population

results for a county that had been suppressed.

1990 Census The 1990 census was the first to employ the concept of swap-

ping. The 100% data (namely PL94, Summary File 1 and Summary File 2) were

published down to the block level. But, where there was risk of potential dis-

closure, a confidentiality edit was performed on the census microdata. For those

small blocks deemed at risk, Census selected a small sample of households with

a higher sampling rate of such at-risk households used in small census blocks.

These at-risk records were paired with other census records from other geographic

locations using a set of matching rules. The matching process preserved key at-

tributes such as household size, the age of those residing in a given location, etc.

The household records are then swapped and the interchanged version is what is

used for the Census Edited File that then forms the source of the various tabular

summaries. The rate of swapping is not disclosed so as to prevent possible reverse

engineering of the process. In addition, Census began using rounding of entries

as well as top and bottom coding to prevent respondent identification arising from

JSR-19-2F 2020 Census 27 March 29, 2020



Figure 3-9: A graphical depiction of the disclosure avoidance process used in the

recent 2010 census.

age extremes etc.

2000 Census For the 2000 census, more emphasis was given to protecting small

blocks and block groups from possible re-identification. For this census, the race

category was expanded to include 63 possible alone or combined races. The prob-

ability of swapping was increased to those cases where disclosure risk was thought

to be higher such as cross-tabulations of key variables, smaller blocks, and also

households that contained unique races in that census block.

2010 Census The approach to disclosure avoidance used in 2010 largely fol-

lowed the approaches developed in the earlier 1990 Census as discussed above.

In addition, Census developed partially synthetic data for group quarters in which

it blanked values that were assessed as at risk and instead substitutes those values

with data obtained from regression models. In summary the disclosure avoidance

process follows steps outlined graphically in Figure 3-9. In the next section we

discuss why this approach was ultimately judged inadequate.
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4 THE CENSUS RE-IDENTIFICATION VULNER-
ABILITY

In this section we discuss the vulnerability discovered by Census using the 2010

census data. We then examine the fundamental basis of the vulnerability: the

results demonstrated in 2003 by Dinur and Nissim [5] that releasing an overly

large number of statistics about a database allows one to perform reconstruction

of the detailed data comprising that database. This result holds true even when

one tries to preserve privacy by noising the results of database queries. We verify

some of their observations in this section. We also offer a reinterpretation of their

results in terms of information theory. Our discussion essentially validates the

conclusion of Census that it is possible to reconstruct census microdata even after

the application of traditional disclosure avoidance techniques like swapping, top

and bottom coding etc.

4.1 Reconstruction of Census Tabular Data

The tabular summaries found in Census products such as PL94-171, SF1 and SF2

have been viewed in the past as safe to publish. These summaries are built using

census microdata and it is this microdata that is controlled via disclosure avoid-

ance. For the 2010 census the techniques discussed in Section 3.3 were all used;

randomized swapping of households, top and bottom limitations on populations

and ages, etc.

In 2018 Census looked at the feasibility that the tabular summaries could

be processed to infer the microdata records that were used to produce them [1].

This had not been thought to be feasible owing to the large amount of data and

computation involved. Such reconstruction of the microdata is not yet a violation

of Title 13 since no personal data (e.g. names, addresses, etc.) are used when

these tables are built. But, as in other re-identification attacks, if external data can

be joined with the microdata then it may be possible to relink the microdata with
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the associated personal data.

In creating the major products published by the Census, each time a cell is

populated in a table it is a result of a query made on the microdata. For 2010

the number of queries (or equivalently the number of tabulations ) in the PL94

publication is about 3.6B or about 10 for every person in the US. For SF1, the

number of tabulations is 22B for population and 4.5B for tabulations of house-

holds or group quarters. For SF2 there are 50B tabulations. And for the survey

of American Indians and Alaskan Natives there are 75B tabulations. Thus Cen-

sus publishes a total of 155B queries over the population and households of the

US. The population of the US in 2010 was approximately 310M and so many

more queries than people (by a significant multiple) have been issued. Most of the

microdata entries used to produce these tables have not been processed through

traditional disclosure methods.

To test the likelihood of reconstruction Census selected only a subset of the

tables that are published. These were

P001 Total population by block,

P006 Total races tallied by block,

P007 Hispanic or Latino origin by race by block,

P009 Hispanic or Latino and not Hispanic or Latino by race

by block,

P011 Hispanic or Latino and not Hispanic or Latino by race

by age (≥ 18) by block,

P012 Sex by age by block,

P012A-I Sex by age by block iterated by race,

P014 Sex by age (< 20) by block,

PCT012012A-N Sex by age by tract iterated by major race alone.

Each table entry is equivalent to an integer-valued linear equation over the

microdata tables. For example, if we set the count of people in tract t who are
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male and who are 27 years old to Tt,M,27 then this is tabulated via the equation

Tt,M,27 = ∑
p

∑
r

∑
b

Bp,M,27,r,b, (4-1)

where p sums over the internal person number in the microdata, r sums over

the possible races, and b sums over the block codes associated with tract t. The

summand B is a selector that is 1 if a record indicates a male of age 27 of any

race residing in a block in tract t and zero otherwise [17]. The sum over race is

necessary to pick up one of the 63 combinations of race recognized by OMB.

To solve the resulting collection of equations, Census used a state of the art

optimization solver known as Gurobi [12]. The Gurobi solver attempts to find

the best integer solution to the set of equations corresponding to the tabulations.

To break up the problem into manageable pieces Census applied the solver at the

tract level. The solver was able to solve the resulting systems with few exceptions.

The microdata for the entire US was determined in this way for all 70,000 Census

tracts and all 11M Census blocks. To perform the relevant calculations, a virtual

parallel cluster was instantiated using Amazon Elastic Cloud facilities and, for this

workload and cluster configuration, completed the task in several weeks. Such a

task therefore is not outside present day capabilities.

The resulting reconstructed microdata contained

• A geocode at the block level

• A binary variable indicating Hispanic origin (or not) and one of the 63 pos-

sible OMB race categories

• Sex

• Age (by year).

Census does publish a sample of the microdata called the Public Use Microdata

Sample (PUMS) for use by demographers and other researchers for both the de-

cennial census and for the American Community Survey, but these are rigorously
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curated to make sure individual information cannot be inferred. For example, the

geographic resolution is limited to areas with populations over 100000. In con-

trast, the reconstructed data has no population threshold and contains data like

single year ages, race, and ethnicity at the block level.

The next step was to see if the reconstructed microdata could then be linked

with commercially available marketing data. Some of this data is freely available

or could be reconstructed using public records, but more complete and current

databases can be licensed through marketing research firms. Such commercial

data typically contain names, addresses, sex and birthdate but typically do not con-

tain information regarding race and ethnicity. While not investigated in this case,

Census data also contain information about family make-up. Using the recon-

structed database, and acquiring commercial data, Census performed a database

join using the age, sex and block locations as the common columns of the two

datasets. The entries in the resulting table would now have the name and address

of the respondent. If correct, these would be a re-identification of the microdata

records. Release of this information would constitute a violation of Title 13.

Census determined that 46% of the reconstructed records matched correctly

to the internal microdata. If a fuzzy match on age were used, 71% of the records

matched. Thus the reconstruction algorithm using only some of the Census ta-

bles matched correctly 71% of the US population. Of those internal Census

records, 45% were successfully mapped to a corresponding record in a com-

mercial database again using fuzzy age matching with a one year uncertainty.

Census then took the records that matched to see if they in turn matched the in-

ternal records Census collects when people submit their responses that contain

name and address. Of the records that matched the commercial data sets, 39% of

these matched exactly with Census records. This corresponds to the successful

re-identification of 52M people or 17% of the population in 2010. Previous es-

timates of the re-identification rate was 0.017% of the population and only 22%

of these were confirmed to be correct. The re-identification risk demonstrated by

Census is four orders of magnitude larger than had been previously assessed [27].
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In section 4.2 we examine a simplified version of this reconstruction prob-

lem in which the data set is just a column of bits to verify that the type of attack

described above is not specific to the data protected by the Census. It is a gen-

eral difficulty associated with publishing too many query results about a sensitive

dataset.

4.2 Results of Dinur and Nissim

As discussed in Section 4, a key motivation for the development of formal privacy

approaches to further secure the 2020 census is the Fundamental Law of Informa-

tion Recovery. This observation, as quoted by Dwork is that

“overly accurate estimates of ‘too many’ statistics is blatantly nonpri-

vate.”

By blatantly nonprivate is meant that given some database with information we

wish to keep private there exists a methodology to issue queries on the dataset

that will allow one to infer a dataset whose elements differ from the original in

some number of elements. The number of elements that are not obtained correctly

reduces as the size of the database increases. Thus for a large enough database the

methodology asymptotically extracts all the elements of the private database.

Dinur and Nissim [5] demonstrated this in a seminal paper by modeling a

database as a set of binary numbers whose (private) values we are interested in

learning. The database is represented by an array of binary digits:

d = (d1,d2, . . . ,dn). (4-2)

A statistical query is represented by a subset q ∈ [1,2, . . . ,n]. The exact answer to

the query is the sum of all the database entries specified by q:

aq = ∑
i∈q

di. (4-3)
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An answer A(q) is said to be within ε perturbation if

|aq −A(q)| ≤ ε

The algorithm A is said to be within ε perturbation if for all the queries q ⊆ [n] the

answers A are within ε perturbation. Dinur and Nissim define the notion of T (n)

non-privacy if there exists a Turing machine that terminates in T (n) steps so that

the probability of determining any fraction of the bits with the exception of a van-

ishingly small number as the size of the data set increases is essentially one. The

result of most relevance to this study is that if the query algorithm provides o(
√

n)

perturbation then non-privacy can be achieved with an algorithm that terminates

in a number of steps that grows polynomially with increasing data set size. More

noise than this is required to get even weak privacy. Dinur and Nissim describe

an algorithm using linear programming to demonstrate the existence of such an

algorithm. The conclusion is that, even in the presence of noise, a sufficiently ca-

pable adversary can infer the secret bits of the dataset. In order to ensure privacy

one must restrict the number of queries or add so much noise that the utility of

statistical queries on the dataset is potentially degraded.

4.3 JASON Verification of the Dinur-Nissim Results

JASON undertook a verification of the Dinur-Nissim results using a variation of

their approach. First we examine the situation where no noise is added to the

queries. We then examine the situation where we add noise. We begin by gener-

ating a random vector of zeros and ones, d, of size n. We then create an m× n

random matrix, Q of zeros and ones. These will be the queries. We then compute

the matrix vector product of the query matrix with the database vector. These are

the random query results. We then use bounded least squares with constraints to

solve the following problem:

argmin ||Qx−d||2 subject to 0 ≤ xi ≤ 1. (4-4)

Once this problem is solved we then round the components of the resulting vector
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Figure 4-1: Fraction of bits recovered for a 1000 bit Dinur-Nissim dataset as a

function of the number of random queries. The lower curve is the minimum frac-

tion recovered, the middle curve is the mean, and the upper curve is the maximum

recovered. No noise is added to the query results.

x to 0 or 1. If we issue n queries and our query matrix is not singular,2 then we

would recover the results of the database immediately. But in fact the full database

can be recovered with less than n queries in the absence of noise. In Figure 4-2 we

plot the fraction of bits computed correctly as a function of the number of queries

for a database of size 1000 bits. Because our queries are random we perform

100 trials and plot the 10% decile of the fraction of bits recovered (lower curve),

the 90% decile fraction of bits recovered (upper curve) and the mean recovered

(middle curve).

With no queries we recover 50% of the bits, but this is of course no better

than random guessing. As the number of queries increases we recover more of

the bits (although the bits recovered will differ with each random attempt). It

is to be expected that we would recover all the bits once we issue 1000 random

2singularity would be a very rare event
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Figure 4-2: Number of queries needed to recover 100% of the private bits in the

Dinur-Nissim dataset as a function of the size in bits of the data set.

queries but as is seen in the Figure all the bits are recovered at about the half way

mark in the number of queries. If one repeats this calculation for databases of

varying size n and asks how the number of queries required to achieve perfect

knowledge of the bits varies with n one gets a roughly linear variation in n as

shown in Figure 4-2. The slope of this roughly linear variation as a function of

increasing database size is shown in Figure 4-3. As can be seen the slope is close

to 1/2 indicating that roughly n/2 queries are required on average to determine

the entire database. This is a special aspect of this particular type of database.

A random query response will get information about a number of the bits. For

example, if we choose to query two bits at a time by summing the values, then a

sum of zero immediately tells us the two bits must be zero. Similarly if we get

a sum of 2 we know immediately the two bits we queried must have both been

one. Thus one can infer the bits more quickly in a probabilistic sense then simply

asking for one bit at a time which would correspond to the query matrix being the

identity. In section 4.5 we apply an information-theoretic argument to show that

JSR-19-2F 2020 Census 36 March 29, 2020



Figure 4-3: Same as Figure 4-2 but each point is normalized by the number of

queries. As the number of of bits increases the curve appears to approach a limit

of 1/2

the results we get from our least squares approach are not far from optimal.

The results above certainly confirm that, without noise, it is possible through

a sequence of queries to infer the entries of a database. It should also be noted that

a recovery approach based on optimization will also succeed if one poses more

queries than the number of entries in the database. To be sure, the Dinur-Nissim

database is special, but it is easily confirmed that through publication of tabular

summaries that comprise (sometimes multiple times) the information contained in

the database, recovery of the bits, in this case a stand-in for microdata, is possible.

If we think of census data as a (very large) Dinur-Nissim database we can

see that the reconstruction attack is quite plausible. In terms of bits, a rough count

of the number of bits contained in the Census Edited File might be

• 3 bits to describe the 8 types of group quarters (8 levels),
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• 5 bits to describe a person’s age (here we assume ages are only reported in

intervals of 5)

• 1 bit to describe Hispanic origin (2 levels),

• 6 bits to describe race (63 OMB race designations),

• 24 bits to describe the 11 million census blocks,

for a total of 39 bits per person. If we estimate that in 2010 there were 3× 108

residents in the US this totals to 1.2× 1010 bits. If we examine the number of

queries in a full cross table this would be

(8×20×2×63)×1.1×107 = 2.2×1011

This rough estimate indicates that the census tables “overquery” the data set by

a factor of almost 20. If we treat the Census database reconstruction effort as an

attempt to infer the bits in a large Dinur-Nissim database there is no question the

database (up to the edits that are used to create the tables) could be reproduced

with perfect accuracy. A similar argument using the idea of Boolean satisfiability

(SAT) solvers is given in [10].

4.4 Queries in the Presence of Noise

Given the vulnerability discussed above it is perhaps of more interest to examine

the number of queries that must be issued to recover the database when each query

is perturbed by noise. To examine this, we used the same bounded least squares

optimization approach but in the presence of noise. For a dataset size of n bits we

added to each random sum a perturbation sampled from a normal distribution of

mean 0 and variance
√

n log(n)/2 where n is again the number of secret bits in

the database. The reason for this particular choice was to see if the optimization

approach would fail with an increasing number of queries. According to Dinur and

Nissim if one adds noise with an amplitude of greater than O(
√

n) then recovery

JSR-19-2F 2020 Census 38 March 29, 2020



should be impossible. We were unable to confirm this observation. Instead, as the

number of queries increases, an increasing fraction of the correct bits is returned.

This is most likely not in conflict with the theorems of Dinur and Nissim as they

require that the adversary be time bounded whereas in our approach we do not

impose any time limit but instead continually issue queries. The results are shown

in Figure 4-4. In the Figure we show the fraction of bits determined correctly as a

function of the number of queries for databases of varying size. For each database

of size n we added a random perturbation sampled from a normal distribution of

mean 0 and variance
√

n logn/2 to each query.

We perform a query of size m 100 times and provide some statistics for

the results. The red, yellow and purple lines indicate the 10%, 50% and 90%

deciles respectively of fraction of bits recovered correctly; the blue lines indicate

the mean of the fraction of bits recovered correctly. As can be seen, the number

of queries required increases greatly, but, in all cases, all metrics measuring the

fraction of bits recovered correctly increase towards one. Thus if one is willing

to issue a large number of queries, for example, a large multiple of the number

of bits, eventually one will learn the internal records of the database. Apparently,

the use of random queries will provide results that average out the applied noise

and recover the required information. In some ways this is to be expected. For

example if we were allowed to issue directly a query for bit i of the n bits in

the presence of noise, we would have received a random response, but continual

averaging over the responses would have recovered the result regardless of the

amount of noise. Indeed we would have predicted that we would have required a

number of queries which is some constant factor of the variance. We discuss this

further in Section 5 where we consider how many queries are required for a given

noise level to recover the internal bits. In the next section we apply information

theory to compute idealized estimates of the number of queries required to infer

the internal data of the Dinur-Nissim database both in the absence and presence

of noise.
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(a) (b)

(c)

Figure 4-4: Fraction of bits recovered as a number of queries for databases of size

10, 40, and 100 bits. For each case we infuse the query results with Gaussian noise

of means 0 and variance
√

n logn/2. The red, yellow and purple lines indicate the

10%, 50% and 90% deciles respectively of fraction of bits recovered correctly;

the blue lines indicate the mean of fraction of bits recovered correctly. Note that

as the number of queries increase, the fraction of bits recovered grows until all the

bits are recovered with near certain probability.

4.5 Information Theory and Database Uniqueness

The purpose of this subsection is to look at Dinur & Nissim’s [5] fundamental re-

sults about database reconstruction from alternative points of view, namely linear

algebra and (especially) information theory. The discussion is rather lengthy (but

we hope pedagogical) so we have relegated it to an Appendix, but we summarize

the main results:

1. In the absence of noise, a database of n � 1 bits is determined by the re-
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sults of approximately 2n/ log2 n queries, on the average over all possible

databases. Put differently, we can expect to recover most of the bits of most

databases.

2. If noise with variance σ2
N < n/48 is added to the results of each query, the

database remains determined by no more than ∼ n queries on average.

3. If the noise variance σ2
N � n/16, we expect to require ∼ 16σ2

N queries to

fix the bits uniquely.

It should be noted that there are at least two facets to DN’s results: (i) o(
√

n)

noise allows the database to be uniquely specified using algebraically (in n) many

queries; and (ii) the bits can actually be reconstructed in polynomial time using

linear programming. Apart from a few obvious remarks about linear algebra in the

noiseless case, we have nothing to say here about the computations required to do

the actual reconstruction. Our information-theoretic arguments advanced here are

nonconstructive, in much the same way as the Shannon channel-capacity theorem

[31], which does not say by what encodings the capacity can be achieved.
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5 DIFFERENTIAL PRIVACY

The Census has proposed the use of Differential Privacy (DP) as the basis for

its future Disclosure Avoidance System (DAS). The goal of DP is to prevent one

from learning about the possible participation of an individual in a survey. The

idea is that the result of a query into the dataset provides results that are largely

the same even if an individual opted out of participating in the survey. This is

accomplished by adding noise to the results of queries so that one cannot easily

perform the types of record linkage attacks that have determined the details of

database records from queries in the past. DP introduced by Cynthia Dwork [7, 8]

and colleagues and developed since then in a vast research literature is viewed as

the present gold standard for formal privacy guarantees. The definition is phrased

in a language that may be unfamiliar, so we go over it in detail.

The setting is databases and database queries. A database D is a collection of

records. Each record has attributes (age, sex, HIV-positive, wealth, or whatever),

and each attribute has a range of values it can take. A query is just some function

on the database. For instance, “how many records are there”, “what is the average

age of HIV-positive people”, and so forth. We think of attributes being exact

and queries giving precise answers, but that is not always desirable as we have

discussed previously and is in fact a mental shortcut. Age is reported in years, not

days, so people with age 12 are those aged between 12 and 13. Then average age

is also reported in years, not some exact number like 62381/129.

DP is a property of algorithms for answering queries. It is clear that, to pre-

serve privacy, queries cannot just return the right answer, so one can think of an

algorithm that answers a query as adding noise to the correct answer. Adding

noise means that the algorithm is not deterministic, but probabilistic, using ran-

dom numbers. The approach in which noise is added to the query is known as a

mechanism.
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An algorithm A is ε-DP (ε-differentially private) if

e−ε <
Pr(A((D)) ∈ T )
Pr(A(D′) ∈ T )

< eε

where D and D′ are any two databases that differ by one record. The probabilities

come from the random numbers that A uses. T is the set of possible outcomes

of A. For instance, if the query was for average age, then T would be an interval

like [37,38), meaning that the average age is between 37 and 38. Alternately, if

A returns continuous values, then one needs to measure the probability that the

result lies in an interval, rather than takes on a specific value.

A key element of DP is the notion of the privacy budget. In the DP literature

this is typically labeled ε . The notation is set up so that a value of ε = 0 indicates

zero privacy loss. The technical definition of a DP algorithm is as follows:

Theorem. An algorithm A satisfies differential privacy if and only if for any two

datasets D and D′ that differ in only one record, we have that for all results T that

lie in the range of the algorithm A

Pr[A(D) ∈ T ]≤ exp(ε)Pr[A(D′) ∈ T ].

Equivalently the ratio of probabilities

Pr[A(D) ∈ T ]
Pr(A(D′) ∈ T

≤ exp(ε).

Note that there is nothing special about D and D′ so we can write the inequality in

a symmetric two-sided manner as we did above:

exp(−ε)≤ Pr[A(D) ∈ T ]
Pr[A(D′) ∈ T ]

≤ exp(ε).

If an algorithm satisfies the definition of being differentially private, the expres-

sion above provides a bound on how much additional information one can infer

from adding or deleting a record in a database. This will prevent learning about a

specific record through the examination of the two datasets for example through

database differencing. It also makes record linkage attacks more difficult in that it

introduces uncertainty in the query results.
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Perhaps of more importance, DP algorithms by definition provide formal

bounds on how many queries can be made before the probability of learning

something specific about a database increases to an unacceptable level. This is

the real role of the privacy budget. A DP algorithm with a large value of ε indi-

cates that the ratio of probabilities of learning a specific result in two datasets with

one record differing is large and so implying that the query using the algorithm

discriminates strongly between the two datasets. On the other hand, a small value

of ε means little additional information regarding the dataset is learned. It is not

hard to show that DP has several properties that make it possible to reason about

how the privacy budget is affected by queries.

Sequential access to the private data degrades privacy Suppose we have an

algorithm A1 that satisfies DP with privacy loss parameter ε1 and another algo-

rithm A2 that has a privacy loss parameter ε2. If both algorithms are composed

then the privacy loss parameter for the composed algorithm is the sum of the in-

dividual privacy loss parameters. we have

Pr[A2(A1(D),D) = t] = ∑
s∈S

Pr[A1(D) = s]Pr[A2(s,D) = t]

≤ ∑
s∈S

exp(ε1)Pr[A1(D′) = s]exp(ε2)Pr[A2(s,D′) = t]

≤ exp(ε1 + ε2)Pr[A2(A1(D′)D′) = t].

In general, if one composes this way k times the effective ε becomes

ε = ε1 + ε2 + · · ·εk.

This implies that one must account for all the operations to be performed on the

data in order to ensure a global level of privacy over the whole dataset. It also

demonstrates, at least in terms of bounds, the cost of a number of queries on a

database in terms of overall privacy and that repeated queries on the data will boost

the ratio of probabilities. This provides a useful quantitative aspect to assessing

disclosure risk atlhough it is not explicitly a statement about disclosure risk.
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The privacy budget behaves gracefully under post-processing If an algo-

rithm A1 satisfies DP with a privacy budget of ε , then for any other algorithm

A2 which post-processes the data generated by A1, the composition of A2 with

A1 satisfies DP with the same privacy budget. To see this, suppose S is the range

of the algorithm A1. Then we have

Pr[A2(A1(D)) = t] = ∑
s∈S

Pr[A1(D) = s]Pr[A2(s) = t]

≤ ∑
s∈S

exp(ε)Pr[A1(D′) = s]Pr[A2(s) = t]

≤ exp(ε)Pr[A2(A1(D′)) = t].

It is important in this argument that only the algorithm A1 accesses the private

data of the database. This composition property is quite powerful. One of its most

important applications is that if you transform the database into another database

with synthetic data processed through a DP algorithm then additional processing

of that data will preserve differential privacy. Thus one can create a dataset from

the original dataset and preserve differential privacy for future processing of the

synthetic data. This feature is an important component of the disclosure avoidance

system currently under consideration by Census.

Parallel composition If one deterministically partitions a database into separate

parts then one can control the privacy loss. If A1,A2 . . . ,Ak are algorithms that

respectively only access the (nonoverlapping) partitions of the database D1, D2,

. . . Dk then publishing the results of the queries A1(D1),A2(D2), . . .Ak(Dk) will

satisfy DP but with an ε given by

ε = max(ε1,ε2,εk).

Such results show that the production of a histogram where the data is partitioned

into categories and then counts are published for each category can still preserve

a given privacy budget.
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5.1 Mechanisms

The definition of DP does not guarantee that there are any DP algorithms, but of

course there are. In general, a mechanism is a way of generating DP algorithms

from data base queries. We discuss some of these below.

5.1.1 Laplace mechanism

Consider a query whose correct answer is some continuous numeric value. The

query has sensitivity Δ if the correct answer on any two neighboring databases

D, D′ can differ by at most Δ. Then an ε-DP algorithm for this query would add

Lap(Δ/ε) noise sampled from a Laplace probability distribution to the correct

answer, where Lap is the two-sided Laplace distribution. The probability density

for the Laplace distribution with parameter β is

1

2β
exp(−|x|/β ).

More usefully, to generate a random Laplace variate from a uniformly distributed

p between 0 and 1, one can compute

β sgn(p−0.5) ln(1−2|p−0.5|).

This density has mean 0 and a variance of 2β 2 and is displayed in Figure 5-1. In

applications to DP we use the relation β = 1/ε . Thus small values of privacy loss

imply large values of β and so very broad distributions with large variances. Note

that the use of the Laplace mechanism and the associated Laplace distribution

matches exactly with the definitions of DP in terms of the bounds on probabilities.

Other distributions can be used, for example, a normal distribution, but in this case

there may be small violations of the DP bounds for extreme values. A slightly

modified definition of DP is required to handle this case but its use would not

affect our conclusions so we won’t discuss it further.
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Figure 5-1: The Laplace distribution for several values of the parameter β . A

large β corresponds to broad tails.

5.1.2 Geometric mechanism

The Laplace mechanism does not produce integers for integer-valued attributes.

The Geometric mechanism adds an integer to the correct answer, where the integer

is randomly chosen from a suitable geometric distribution One could instead use

the Laplace mechanism and round, but these results are slightly different. The

(two-sided) geometric distribution with parameter α has probability density

α −1

α +1
α−|x|

for producing integer x. If Δ is the sensitivity of the query, ε-DP is the same as

α = exp(ε/Δ).
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5.1.3 Matrix mechanism

In applying DP to the census tables one approach would be to make one colossal

query of the confidential data that produces at once all the tables that the public

will be able to see. Each number in each of these tables is a count, so the colossal

query can be represented as a big matrix M applied to a huge vector c of the

confidential data. DP would add noise to each count in Mc. But this may introduce

more noise than is strictly required. A way to deal with this is known as the matrix

mechanism [25, 19]. The public tables published by the Census are counts over

discrete categories. The (confidential) data is a data base where each record has

some attributes, and each attribute only takes on a finite set of values. These

include age (from 0 to some upper bound), sex, Hispanicity, race (63 values), and

so forth. An equivalent way of representing the data is as a (long) histogram,

with one count for each possible combination of attributes. So there would be a

count for ‘male black-asian hispanics of age 37’ and one for ‘female white non-

hispanics of age 12’, and so forth. If these are arranged in some arbitrary order, we

can think of the data base as a vector of counts (x1,x2, · · · ,xn). Then the result of

a count query (e.g., ‘male native-americans’) is the inner product w · x where w is

a vector of 0s and 1s of length n, with 1s exactly for those places in the histogram

that count male native-Americans. This inner product is one of the counts in the

publicly released tables. The set of queries that produce all these counts can be

represented as the rows of a very large matrix W .

The idea of the matrix method is to answer all these queries (or this one

giant query) in two stages. First answer a set of strategy queries in a differentially

private way, and then combine the answers to these queries to get the queries

we want (Wx). The strategy queries can be represented by some matrix A, one

computes m = Ax+Λ, where Λ is a vector of noise chosen so that the result is

ε-DP. Then any post-processing of m does not affect privacy, so if W =UA, then

Wx=Um, which are the tables we want. One can attempt to find such an A that

minimizes the mean error in the output. The process is illustrated graphically in
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Figure 5-2: Process utilized by the matrix mechanism (from [25]).

Figure 5-2. This is a substantial computation described in the referenced papers.

5.2 Some Surprising Results in Applying Differential Privacy

The definition of DP does not immediately speak to the kinds of errors introduced.

Nor does it guarantee that a query has a satisfactory (or any) DP algorithm. Below

are presented some examples that indicate that one must be careful sometimes

with the result of DP calculations to ensure statistical utility of the results.

5.2.1 Cumulative distribution functions

In [26] an example is given of how DP can affect common statistical measures.

For example if we want to compute a cumulative distribution function (CDF) of

incomes in some region we would count the number of income values less than

some prescribed value and then divide by the total number of incomes to get a

distribution. Under DP each time such a query is issued noise is added to the

result. Depending on the level of noise injected the resulting CDF may become

non-monotonic, something that is mathematically forbidden. Some results are

shown in Figure 5-3 for a sample CFD under various values of ε . As ε is increased

the generated CFD will converge to the smooth case without noise. The examples

shown with a large amount of injected noise could not for example be reliably

differenced to provide probabilities over small intervals. This is in fact the point

- we cannot focus too clearly on the small scales. The issue identified here can

be easily fixed by re-sorting the data so that a monotonic CFD results. The main
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Figure 5-3: An example of a CDF of incomes under various values of the privacy

loss parameter (from [26]).

point here is simply to point out possible issues with results published directly

under DP.

5.2.2 Median

The examples of mechanisms so far involve additive noise, but the definition does

not mention the type of noise. Consider a query that asks for the median. If the

middle three elements in the larger database are 0.12, 0.14, 0.19, then if the size
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of the database is odd, the median is 0.14, otherwise some tie-breaking algorithm

would be needed. The smaller database is the result of removing one record from

the larger database. If the number removed is no more than 0.12, the new exact

median will be between 0.12 and 0.19. If the number removed is 0.19 or more, the

same is true, and if 0.14 is removed, it is also true. So a privacy algorithm could

choose any number between 0.12 and 0.19. Note that this algorithm decides what

to do based on the data. It satisfies the intuition behind DP in that the result is

independent of which record is removed from the database. However, it is not

ε-DP for any ε . To see that, consider what the algorithm returns for the smaller

database, if 0.12 were returned. Then the middle 3 might be 0.10, 0.14, 0.19, and

the algorithm could return any value between 0.10 and 0.19. In particular there

is a positive probability of returning a value in the interval [0.10, 0.12] for the

smaller database, but that’s impossible for the larger. So the ratio of probabilities

in the definition of DP would be 0, which is impossible for any ε .

For the median, however, the sensitivity Δ is large. If the attribute takes

on values between 0 and 1, and in the smaller database half of them are 0 and

half of them are 1, then the median for the larger database is whatever value was

removed, so Δ = 1/2 (assuming that the algorithm chooses the midpoint for even

sized databases). The Laplace mechanism doesn’t look at the data, so it will

add Lap(1/2ε) noise. Answers that then fall outside [0,1] presumably would be

truncated to be in range, so there is a positive probability of getting 0 or 1, which

will almost always be silly and completely uninformative.

There is a similar story for any quantile, or the min, or the max, but the me-

dian is often used as a robust measure of location. Dwork and Lei [6] give a dif-

ferent algorithm that should be generally more satisfactory, but is data-dependent,

and can fail (returning ⊥ (null) in the language of computer science) on weird

databases, such as the one in this example.

The decennial census data is just counts, so the peculiarities of medians are

not directly relevant, but other statistical agencies and other statistical products
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might not be so lucky.

5.2.3 Common mechanisms can give strange results for small n

Another mechanism is known as the random or uniform mechanism (UM). For a

query that has a finite range, the random mechanism just chooses one uniformly;

For example for the range of integers 0 through 10, choose a query response with

probability 1/11. The random mechanism is ε-DP for any ε . If one were to

propose a mechanism for a query associated with this finite collection of integers,

it would seem undesirable for it to give the correct answer less frequently than

the random mechanism does. That is, there may be many DP algorithms for the

query, and it is unsatisfactory to chose one whose accuracy (meaning the chance

of getting the right answer) is less than just choosing a result at random. For small

n, both the truncated Laplace or Geometric mechanisms are unsatisfactory in this

way.

There are various mechanisms for producing DP count data, The simplest

way to think about these is to assume the data base has records with one sensitive

field that has value 0 or 1. Suppose the query that counts the number of 1s needs to

be protected. We know the answer is in the range [0, n], so the mechanism needs

to produce a value in that range. The Range Restricted Geometric Mechanism

(GM) produces

min(n,max(0,a+δ ))

where a is the true answer and δ is an integer chosen (at random) from a geometric

distribution

(1−α)|δ |/(1+α)

where α = exp(−ε) and ε is the parameter in differential privacy. Unfortunately,

in this case, 0 and n will be over-represented. Worse, for most probability distri-

butions on a, the actual count, if n is 2, the true answer of 1 is less likely than

either of the incorrect answers 0 or 2. This is clearly a small n phenomenon,
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but for small and modest-size n the usual mechanisms with various common loss

functions give counter-intuitive results (cf. e.g. [4]).

Any mechanism for this problem is characterized by a (column) stochastic

matrix P, where Pi, j is Pr(i| j), the probability the mechanism returns i when the

true result is j. P is an (n+ 1)× (n+ 1) matrix. The uniform or random mech-

anism (UM) has Pi j, = 1/(n+ 1), that is, choose any answer at random. The set

of all mechanisms can be defined by linear equations and inequalities. The only

unobvious one, differential privacy, is expressed by

Pi, j ≥ αPi, j+1, Pi, j+1 ≥ αPi, j

for all i and j. The choice of a mechanism then comes down to minimizing some

loss function over this polytope, preferably by linear programming. There are n2

variables and a quadratic number of constraints.

Cormode’s paper [4] notes that one can add a number of intuitively desirable

constraints on the mechanism by adding linear constraints to this formulation. For

instance, one might like the probability the mechanism returns the correct answer

to be at least as large as the chance UM returns it, Pi,i ≥ 1/(n+1). Interchanging

the values 0 and 1 in the statement of the problem converts a true answer a into

n− a. One would expect the mechanism to be oblivious to this choice, which

imposes a symmetry contstraint Pi, j = Pn−i,n− j. One would like the correct answer

to be at least as probable as any other. The geometric mechanism (GM) satisfies

these only for sufficiently large n, at least 2α/(1−α), which is roughly 2/ε . If

one adds the condition that answers closer to the true answer should be more likely

than answers further away, then GM requires α < 1/2.

For completeness, here is the explicitly fair mechanism of [4], which looks

more complicated than it is, and satisfies their various sensible conditions:

Pi, j =

{
yα |i− j|, if |i− j|< min( j,n j)

yα� |i− j|+min( j,n− j)
2 � otherwise
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where

y =
1−α

1+α −2αn/2+1
,

so the probability of returning the correct answer is a little larger than in the geo-

metric mechanism, and the probabilities drop off more slowly with distance from

the correct answer. The paper gives rules for choosing between this mechanism

and GM.

5.2.4 Nearly equivalent queries with vastly different results

Suppose we have a database for which HIV-status is an attribute, with the values

0 or 1. The query might be “are more than half of the records 1?” One sensible

way of answering this question using counts would be to ask for the size of the

database n, and the number of ones, x, and look at the result. The returned values

would have Laplacian or Geometric noise added to them, but unless the number

of ones is very near 50%, the answer to the original question just pops out. A

different computation, equivalent if exact results are returned, would be to ask

if the median value of HIV-status is 0 or 1. As we have seen there is a positive

chance of getting a meaningless answer regardless of how different the counts of

zeros and ones. A more sensible query would be to ask for the average. The

average is not a count query, but it has sensitivity 1/n for values between 0 and

1. So a DP query would answer with Lap(1/nε) noise added to the exact answer.

This error drops rapidly with increasing n.

5.3 Invariants

The main promise of DP is to limit the knowledge that can be gained by adding

or subtracting a record from a database. Informally if we make a small change

in the input data the result of the output also undergoes a small change. That

this is not always the case has been shown repeatedly through linkage attacks and

database differencing. However, if certain results in a database must be openly
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Figure 5-4: DP with invariants must be interpreted relative to a world in which

respondents opt-out but consistent with invariants [21].

published without any protection then a small change in the input can have large

consequence on the output if the output is directly tied to the small change.

An important example is the notion of an invariant. A simple example of

an invariant relevant to the census is the need to publish an accurate count of the

population of each state. For the 2020 Census, as in previous censuses, there

are plans to publish state populations as exactly as possible and certainly without

noise and so the state populations are invariants. In theory, releasing a true count

is technically a complete violation of the DP guarantee. This is simply because

removing one entry changes the population and so it is immediately obvious that

a record has been removed even though we may not know which record.

As briefed to JASON by Prof. A Machanavajhala [21], it is possible to con-

struct various scenarios where releasing an invariant could allow one to infer ad-

ditional protected information regarding a record. There is to date no worst case

characterization of privacy loss in this situation. At best, one can consider the in-

cremental loss in releasing DP results in the presence of invariants. The situation

is shown graphically in Figure 5-4. At present, it is not clear to what extent the
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addition of invariants constitutes a vulnerability for Census data. As will be dis-

cussed below there are many more constraints that lead to invariants than just the

population of the states. JASON does not know of a systematic approach to assess

this except to perform a risk assessment by attempting to identify DP microdata as

was orginally performed by Census in first identifying the existing vulnerability

in the absence of noise. We discuss this further in Section 7.

5.4 Database Joins under Differential Privacy

In creating the various Census products such as SF1, the tables are produced

through a join between two databases. One contains information about persons

and the other about households. Queries such as the number of men living in a

particular Census block requires only access to the person database while queries

such as the number of occupied houses in a Census block requires only access

to the household database. But if one wants to know how many children live in

houses headed by a single man this requires a join of the two databases. Joins

under DP can be problematic because one must examine the full consequences

of removing a record in one table as it is linked to potentially multiple records

in other tables. One way to address this is to create synthetic data as the Cen-

sus is doing for both tables and then perform the join as usual. This however

has been shown to produce high error in the results of queries essentially because

too much noise is added for DP protection. A number of groups have researched

this issue and provided possible solutions. The state of the art is a system called

PrivSQL [15] which makes it possible to more efficiently produce tables via SQL

commands while attempting to enforce a given privacy budget and while also at-

tempting to optimize query accuracy. An architecture diagram for this system

is shown in Figure 5-5. The system must generate a set of differentially private

views for a set of preset queries. A sensitivity analysis must be performed and a

set of protected synopses are then generated that can be publicly viewed. Cen-

sus will perform the appropriate queries and create the protected tables using this
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Figure 5-5: Architecture diagram for private SQL queries [15].

approach. Microdata associated with these tables will then be produced. This is

at present work in progress, At the time Census briefed JASON their plan was to

release a modified version of SF1 but tables requiring the linkage of data from

person and housing records could not yet be constructed. It is expected that with

further work using PrivSQL it should be possible to eventually produce many if

not all of the traditional Census products.

5.5 The Dinur-Nissim Database under Differential Privacy

We provide here an example of the use of methods like DP as applied to queries

of the Dinur-Nissim dataset. As discussed in Section 4.2 Dinur and Nissim made

use of a simple database consisting of binary numbers to put forth what is now

known as the Fundamental Law of Information Recovery, namely, that even in the

presence of noise one can determine the contents of a private database by issuing

and receiving the responses to too many queries. Here we illustrate that, despite

the addition of noise, it is still possible to obtain meaningful statistical information

from the database. We create a DN database as an array of randomly chosen
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Figure 5-6: Accuracy of a sum query on the DN database. The values of N shown

indicate the size of the database.

bits of size N bits. These could be the answer to a survey where the response

is yes or no. We would like for example to know how many people responded

yes to our survey. The result of our query is just the sum of the bits giving us the

number of affirmative answers. For any query of this type issued we add a random

amount of noise sampled from a Laplace distribution Lap(1/ε) with mean zero

and variance 2/ε2. To measure the impact of the additional noise we calculate the

query accuracy defined by

A = 1− |S̃−S|
S

where S̃ is the noised sum and S is the sum in the absence of noise. A varies from

1 (no error) and then decreases towards zero and can become negative. Clearly, A

of zero is of no utility. For each value of ε and N the number of bits we repeated

the calculation 1000 times and reported the average A. The results are shown in

Figure 5-6.

As can be seen, the accuracy of a query perturbed using the Laplace mech-
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anism depends on the size of the data set. For the smallest dataset of size 100, a

privacy loss value of ε = 2 degrades the query accuracy by about 15%. As N is

increased the query accuracy improves and for N = 5000 the effect of the pertur-

bation due to DP is imperceptible. In fact it would be smaller in this case than

the statistical uncertainty associated with the query which varies as 1/
√

N. For

smaller values of ε the impact of the perturbation becomes more noticeable with

the conclusion that smaller values of ε that provide increased privacy protection

will not disturb statistical accuracy provided one deals with large datasets.

5.6 Multiple Query Vulnerability

As discussed in section 4 for the Dinur-Nissim dataset, it is still possible to recover

the bits of the dataset provided enough queries are issued and optimization is used

to get a “best fit” to the bit values. This works in our case even in the presence of

arbitrarily large noise. The optimization technique, in our case least squares with

constraints followed by rounding, can apparently return a result that converges to

the true answer - the values of the bits in the dataset. We note that the residual

norm of the optimization in this case will be very large, indicating that when

the optimized result is used to compute the right hand side of the linear system

representing the queries, the difference with the right hand side presented to the

optimizer is very large. This is to be expected as we constrain the lower and

upper bounds of the solution to be zero and one respectively. When we apply,

for example, Laplace noise to the right hand side, we perturb it so that in some

cases it would be impossible for a series of zeros and ones to sum to the indicated

right hand side values. The larger is the noise amplitude, the more likely this is to

occur. Nevertheless the optimizer will find solutions (effectively averaging out the

applied noise) and as the number of random queries is increased the percentage of

recovered bits increases.

To put this observation into the context of the Census vulnerability, we gen-

erate a Dinur-Nissim database consisting of 4000 randomly chosen bits. We then
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generate a query matrix Q of size NQ × n where n is the size of the database and

NQ is the number of issued random queries. In this case we set NQ to be a multiple

of the dataset size as this seemed more relevant to the issue faced by Census. That

is, given a population, how many queries expressed as a multiple of the popula-

tion suffice to infer the microdata. In the case of the Dinur-Nissim dataset, it is

possible to ask this question even in the presence of noise and, empirically, while

the number of queries required to determine the bits does increase with the size of

the dataset, eventually, with high probability, all the bits can be recovered.

Given a query matrix and the dataset we compute the matrix-vector product

and then set a value of the privacy loss parameter ε (in our case ranging from

0.01 to 1) and added to each component of the vector a random amount of noise

sampled from the Laplace distribution. We then applied constrained least squares

optimization and examined the fraction of bits recovered correctly. We assume

that different bit locations are recovered correctly in computing the fraction recov-

ered, but privacy concerns would certainly arise if the fraction of bits recovered

exceeded 0.9. After some number of queries the algorithm succeeds in determin-

ing all the bits every time. A Matlab code performing this computation is included

in Appendix B.

The results of our experiment are shown in Figure 5-7. Note that if one just

guesses randomly, it is possible to recover 50% of the bits and so the minimum

fraction of bits recovered is 0.5. The x-axis of the plot (labeled "Query multiple")

indicates the number of queries scaled as a multiple of the size of the data set. In

this case a multiple of 20 indicates 80000 random queries were made. The y axis

indicates the privacy loss parameter. It can be seen that for example for ε = 0.01

and 4000 queries the results are not much better than random. But as the number

of queries increases the fraction of bits recovered also increases. As the privacy

parameter increases, and the number of query multiples increases eventually all

the bits are recovered. This behavior is in line with the results of DP. Not only

must one noise the data, one must also restrict the number of queries.
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Figure 5-7: Fraction of bits recovered for the Dinur-Nissim database as a func-

tion of the privacy loss parameter and the number of multiples of the size of the

database.

5.7 Disclosure Avoidance using Differential Privacy

The Census proposes to use an idea similar to that discussed above using the

Dinur-Nissim database but applied to the much more complex microdata collected

by the Census. As noted above, if one post-processes data that have been previ-

ously processed through an algorithm that satisfies the DP conditions, then the

post-processed data will also satisfy the constraints of DP provided the original

data are not accessed again during the post-processing.

If one creates the usual histograms as published by the Census (i.e. PL94,

SF1, etc.) and then applies a DP mechanism to the results, then one could apply

the same optimization technique used to demonstrate the Census vulnerability in

Section 4 to produce microdata that are now themselves protected by DP. This
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approach will create synthetic microdata upon which statistical queries can then

be issued. We detail below the proposed approach following closely the briefing

to JASON by Dan Kifer [14].

The approach Census will use has three phases

1. Select

2. Measure

3. Reconstruct

The microdata are first represented as a multidimensional histogram H. These are

the tables that Census typically publishes. This histogram is then flattened into

a column vector. A query on this histogram H is a linear function of the vector

and can be represented by a query workload matrix Q. To acquire the answer to a

prescribed set of queries we simply compute QH.

Selection phase In the selection phase a strategy matrix A is constructed for

the purpose of optimizing the accuracy of various queries. A well chosen strat-

egy matrix will minimize the sensitivity associated with the chosen queries by

reducing the statistical variance of the queries. Algorithms for computing such a

matrix are given in [20], but require some understanding of what the preferred

query workload would be so that the appropriate set of queries is optimized for

accuracy.

Measurement phase In this phase the query workload is performed with noise

then added to the result. The amount of noise will depend on the sensitivity of the

query and the chosen value of ε:

Ỹ = AH +Lap{ΔA/ε}

where Ỹ is the DP response to the query and ΔA is a norm measuring the sensitivity

of the strategy matrix A.
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Reconstruct The final step is to estimate QH from the vector Ỹ . This requires

undoing the multiplication by the strategy matrix:

QH = QA+Ỹ

As the strategy matrix may not be square, the Moore-Penrose pesudo-inverse is

used to compute H and then QH.

The measurement phase consumes the privacy budget. Once this is accom-

plished the results could in principle be released to the public. The reconstruction

phase will not re-access the private data and hence does not require additional

privacy budget. The cleverness of this idea is that the final product can even be

in the form of microdata which can then be reprocessed by users of the Census

data. What is less clear however, is the accuracy of queries that have not been

optimized using the High Dimensional Matrix Method and whether the results

of those queries will have an acceptable statistical utility. This will be discussed

further in Section 6.

While the steps of this procedure are easily described, the computational

aspects of doing this for the census pose significant challenges. Recall that for

the country Census publishes billions of queries and so the histogram will have

billions of cells. The query matrix could be as large as the square of the histogram

size depending on what measurements are to be reported. Choosing a strategy

matrix based on the potential query workload is not feasible. The reconstruction

is also going to entail an enormous computational cost as a a result of the matrix

sizes. Finally, the result of the multiplication by the Moore-Penrose inverse will

lead to non-integer results. If we wish to convert these to sensible microdata a

second phase will be required in which the results of the first phase will have to

be converted to integers. Once this is done the optimization approach taken by

Census to reconstruct the microdata can be used to create differentially private

microdata.

The solution to the challenges discussed above are to break the problem

up into pieces and then perform the DP reconstruction on each piece. The first
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attempt to do this was a “Bottom Up” approach in which the select-measure-

reconstruct approach was applied to each Census block and then converted to

microdata. This has the advantage that the operations are all independent for each

block and the privacy budget is simple - one value of ε can be assigned to each

block. The privacy cost does not depend on the number of blocks as each of these

is processed independently of the others. It also has the advantage that the counts

at various levels of the Census hierarchy are consistent. However, the injection of

the DP noise adds up as the data are combined to form results for block groups,

tracts, etc. A county in a populous region that contains many blocks will have an

error proportional to the number of blocks. The “Bottom Up" approach is easy to

conceptualize but it doesn’t use the privacy budget efficiently.

Instead, Census will use a “Top-Down” approach. The privacy budget is split

into six parts: national, state, county, tract, block group and block. A national

histogram H̃0 is then created using the select measure and reconstruct algorithm

outlined above. This involves the population of the US but the number of queries

is now manageable as the queries are not specified over geographic levels finer

than the nation. Once this protected histogram is in place the same process can

then be applied for the states using the privacy budget allocated for states. These

histograms are constrained so that they are consistent with national totals. This

process is then followed down to the county, block group and finally the block

level. Once a protected histogram with non-negative integer entries is created

it can then be transformed to microdata using the optimization approach Census

used to determine the reconstruction vulnerability as discussed in Section 4. The

Top-Down approach has the advantage that it can be performed in parallel and

the selection of queries can be optimized at each level making it possible to use

the privacy budget more efficiently. It also has the advantage that it enforces any

sparsity associated with 0 populations at various levels (for example someone over

100 who indicates they are a member of five racial categories). These are known

as structural zeros.

In producing an appropriate histogram that can be turned into microdata two
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optimizations are performed. The first is a least squares optimization which effects

the Moore-Penrose inverse subject to various constraints that the histogram being

determined must be consistent with the parent histogram. For example the total

population of the states must sum to the population of the country. The result of

this optimization leads to fractional entries and so the second step is to perform an

optimization that assigns integer values to the histogram cells such that the entries

are non-negative integers that are rounded values of the fractional results and that

sum to the same totals consistent with the parent histograms. This “rounding” step

is performed using the Gurobi solver [12].

A complication in executing the TopDown algorithm is the need to publish

some data without protection. These correspond to the invariants discussed in

Section 5.3. Census plans to provide accurate counts of the population of each

of the 50 states, DC and Puerto Rico to support apportionment of Congressional

representatives. It might also be desirable to report correct population down to the

census block.

But in addition, there are other constraints and so it would be desirable to be

consistent with these. For example, the number of occupied group quarters and

housing units in each census block is public information as a result of a program

called Local Update of Census Addresses (LUCA). This program is used by Cen-

sus to update the Master Address File (MAF) used to distribute census surveys.

The addresses themselves are protected under Title 13 but the number of group

quarters is publicly released. As a result, if a census block were to have an oc-

cupied jail then the TopDown algorithm must assign at least one person to that

jail. As another example, the number of householders in a block should be at least

the number of households [14]. There are other data-independent constraints. For

example, if a household has only one person in it then that person is presumably

the householder.

Census has proposed a partial solution to this problem by casting the con-

straints as a series of network flows that can then be appended to both the least
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squares and rounding optimizations described above [14]. This work is still ex-

perimental at the time of this writing and will be further evaluated.

The enforcement of invariants such as national and state populations presents

no issues in terms of the DP computation. Neither does the enforcement of struc-

tural zeroes such as there cannot be any males in a dormitory that is all female.

But the constraints that are independent of the data such as the fact that a grand-

parent must be older than the children in a household creates issues of infeasibility

as the optimization recurses down the Census geographic hierarchy. If such im-

plied constraints are ignored there is the possibility that for example assignments

at the block group level are not consistent when extended to the higher Census

tract level. When this happens it is called a “failed solve”and Census then ap-

plies a “failsafe” optimization. The constraints impeding solution are relaxed and

the optimizer finds the closest feasible solution meaning a violation of the exact

constraint will be allowed. The assignments at the higher geographic level (for

example the county level of optimization at the tract level fails) are then modified

to maintain hierarchical consistency. The overall impact of the use of the failsafe

on the utility of the protected Census data is still not fully understood and is an

area of ongoing research. One approach that would avoid this difficulty is to not

insist on hierarchical consistency at the finer geographic levels, in particular cen-

sus blocks. For example providing the correct population in each block might not

be enforced as a constraint. This however may have implications for the use of

census data in the redistricting process, an issue we discuss in Section 6.

The new disclosure avoidance scheme will now look as in Figure 5-8. It

is expected that Census will still perform the usual imputations associated with

households and general quarters for which Census enumerators cannot obtain in-

formation but, at present, no household swapping will be performed. Instead the

Census will apply the TopDown algorithm and then create a set of noised tabular

summaries and also, for the first time, the synthetic microdata associated with the

summaries.
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Figure 5-8: A graphical representation of the proposed DAS using the TopDown

DP algorithm.

The proposed disclosure avoidance system using DP has been implemented

in Python and is publicly available [34]. Work continues to improve query accu-

racy and enforce invariants and implied constraints. Census is to be commended

for making this software available to the community so that it can be examined in

detail and inform users on the details of the application of DP to census data.
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6 ASSESSING THE ACCURACY-PRIVACY TRADE-
OFF

In this section we examine the results of some of the early applications of the

new Census DAS on census data. As mentioned in Section 5 Census has publicly

released the DAS software. To further aid users, it has processed census data from

1940 and produced synthetic microdata. It has also released some preliminary

assessments of query accuracy for the 2010 census data. We discuss these results

here with an emphasis on the trade-off between query accuracy and the level of

privacy protection.

6.1 Census Analysis of 2010 Census Data

Census has applied the proposed DAS using DP to the 2010 census data. The

advantage here is that the schema for the 2010 census largely overlap with the

schema for the forthcoming 2020 census. But a disadvantage is that this data is

not yet publicly available. By law census data can only be publicly released no

earlier than 72 years after a census is taken so the latest data available to the public

is the 1940 census. We are able to provide only a limited view of the results of

the Census analyses on 2010 data as most of these are not yet available for release

and are still protected under Title 13. JASON did have access to these results but

the assessment provided here can only describe them qualitatively.

As briefed to JASON by P. LeClerc [16], Census has executed the TopDown

algorithm on a histogram from the Census Edited File HCEF to produce a noised

histogram of privatized results HDAS. The experiments were performed for the

PL94-CVAP product that has 4032 entries representing a shape of 8×2×2×63×
2. Recall that this product is used to examine voting districts to ensure adherence

to the Voting Rights Act and includes the following pieces of information:

• 8 group quarters-housing units levels,
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• 2 voting age levels,

• 2 Hispanic levels,

• 63 OMB race combinations,

• 2 Citizenship levels.

For each state one can create such a histogram and examine it at various geo-

graphic levels: state, county, tract, block group and block. For each geographic

level (geolevel) γ , Census executed 25 trials of the DAS, averaged over the results,

and reported a number of metrics. We will consider here only one of them:

TVDγ = 1− L1(HDAS,γ ,HCEF,γ)

2POPγ
.

This can be thought of as a type of accuracy metric using the L1 norm or sum of

the magnitudes of the distance between the DAS and CES entries. This is similar

in some respects to the Dinur-Nissim query accuracy metric discussed in Sec-

tion 5.5. If the DAS and CEF histograms were to agree across all components at a

given geographic hierarchy level γ , the TVD value would be exactly 1. The possi-

ble difference between the values is normalized by twice the population, but this

does not provide an absolute lower bound on the TVD metric and it can become

negative depending on how much noise is infused into the histogram values.

As of the date of this report, Census has publicly released TVD metrics for

the state of New Mexico [30]. These indicate query accuracy vs. privacy loss for

actual Census data and may be reflective of the results of the future 2020 Census.

In Figure 6-1, the TVD metric as a function of ε is plotted at the state, county,

tract group, tract, block group and block for the state population. As ε increases

from 0, the TVD metric will tend to one indicating that as ε increases less noise is

injected into the histograms until at sufficiently large ε the DAS and CEF results

agree in this norm. As can be seen, for geolevels with large populations (e.g.

counties, tracts and even block groups) the TVD metric for population is close to

one for values of ε as small as 1/2. At even lower levels of ε we see the same

JSR-19-2F 2020 Census 70 March 29, 2020



Figure 6-1: A plot of the TVD metric for total population for various geolevels as

a function of privacy loss parameter for the state of New Mexico [30].

type of degradation of query accuracy as in the Dinur-Nissim example. Because

we cannot tie TVD to a measure of statistical accuracy we cannot comment on

whether such degradation of accuracy would or would not be acceptable from that

point of view. At the block level, because populations are typically much smaller

than block groups the degradation is noticeable and even at ε = 4 we still have

TVD ≈ 0.8.

In Figure 6-2 we show again the TVD metric but this time for a subhistogram

looking only at those entries associated with race and Hispanic origin. Typically

the counts here will be smaller particularly as we examine the finest block level

and so the TVD metric deviates further from 1 than shown in Figure 6-1 as the

privacy loss budget is decreased.
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Figure 6-2: A plot of the TVD metric for race and Hispanic origin for various

geolevels as a function of privacy loss parameter for the state of New Mexico [30].

The TVD metric provides some insight into the degradation of query accu-

racy as the privacy loss budget is decreased, but it suffers from being a coarse

measure of accuracy as it sums over the entries at a given geolevel and so does not

provide a view of the variance of the individual differences. For example, it would

be useful to see the distribution of TVD measure block by block. A more detailed

assessment in terms of microdata but for the older 1940 Census is discussed in the

next section.

6.2 IPUMS Analysis of 1940 Census Data under the Census
DAS

IPUMS (Integrated Public Use Microdata Series) is an organization under the Uni-

versity of Minnesota Population Center providing census and survey data from a
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variety of countries. It is the world’s largest repository of census microdata. JA-

SON was briefed by Dave van Riper of IPUMS [36] (cf. also [37]) who examined

in detail the application of the Census DAS to the 1940 Census microdata. We note

that JASON has not verified this work but we discuss it here to give examples of

the differences between counts associated with the DAS processed synthetic mi-

crodata and the true census microdata. As discussed in Section 4, we expect more

dispersion as we descend to finer geographic regions. At the time of van Riper’s

briefing he had performed comparisons for Minnesota census data. Since then, he

has also performed analyses for the entire US and it is this data that we discuss

here.

It should be noted that the geographical hierarchy for the 1940 census was

different than that used today. The finest level of geographic resolution is what

was then called an enumeration district. Enumeration districts are roughly com-

parable to census block groups on the geographic spine and also similar in some

ways to what Census terms “places”. The median population for enumeration dis-

tricts was about 1000 people. The median population for census places in 1940

was about 800 people.

As indicated in Section 5, Census has publicly released differentially pri-

vate microdata for the 1940 census. Microdata files were generated for the entire

country for eight different values of the privacy loss parameter ε : 0.25, 0.5, 0.75,

1.0, 2.0 4.0, 6.0, 8.0. Four runs of the DAS were provide at each value of ε .

The microdata made available are those of the PL94-CVAP Census product and

include whether a respondent is of voting age, Hispanic origin and Race as well

as household and group quarters type at four geographic levels: national, state,

county and enumeration district. IPUMS did not run the Census DAS to gener-

ate synthetic microdata. Instead it analyzed those results generated by Census

to compare against unfiltered microdata that constitute ground truth. The source

code for the DAS system [34] is configurable so that one can allocate fractions of

the total privacy budget over the various geographic levels and tables. In this case

the budget is allocated evenly over geographic levels. Each level of the hierar-

JSR-19-2F 2020 Census 73 March 29, 2020



chy receives a quarter of the total privacy budget. Allocations must also be made

for the various tables that are produced and then subsequently noised by the DP

algorithm. In this case Census chose the following fractions:

• Voting age by Hispanic Origin by Race: 0.675

• Household group quarters type: 0.225

• Full cross of all variables: 0.1

The fraction of the total privacy budget to be allocated for each level and for each

table is then the product of the geolevel allocation times the table fractions. For a

given total privacy loss budget ε it is these fractions that are used to provide the

noise levels for each individual table at a given geographic level. For example if

the total privacy budget were 0.25 then the privacy budget for each histogram will

look as shown in Table 6-3. The table shows the effective values of ε but also the

level of dispersion for an equivalent Laplace distribution. These dispersion levels

will affect various tables differently. A table associated with large counts will not

be significantly affected by an ε corresponding to a dispersion of 300 but a table

at the enumeration district level could be significantly affected.

Box plots of the distribution of populations across all US counties in 1940

are shown in Figure 6-3 for all the values of ε used in the Census runs of the

DAS. The distribution as computed by IPUMS from the true 1940 microdata is

shown at the left of the Figure. As can be seen, as ε increases the box plots

converge to the IPUMS result. For the lowest value of ε used, differences can be

seen for populations of 100 or more. By and large, the box plots are quite similar

across the various values of ε . More insight into the effect of the DAS at the finer

geolevels can be seen in Figure 6-4 where box plots for the differences between the

DAS and IPUMS population estimates are shown. The orange box plots represent

counties and the teal plots represent enumeration districts. Again as ε increases

we see the differences reduce. But at lower values of ε differences on the order of

several hundred people appear when we look at various outliers. It should be noted
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Table 6-3: Values of the privacy budget allocated to the various geolevels and

tables by the Census DAS system for the 1940 Census data [36]. The noise dis-

persion is listed here to give some notion of the variance of the noise applied to

the data. In this case the value ε = 0.25 is used [36]

.

that the box plots are not normalized and that the teal box plots for enumeration

districts are smaller simply by virtue of representing smaller populations.

Van Riper has also computed how the populations of counties compare in

detail in Figure 6-5. The Figure plots the IPUMS value for a county population

vs. the DAS value. The level of agreement is measured by how closely the two

values would lie to the 45◦ line indicating equality. As can be seen the county

populations align well at all values of ε . In contrast, for enumeration districts we

see in Figure 6-6 more dispersion. This is most observable as ε becomes smaller.

Note that because the DAS does not allow negative population there is a pile-up

as population size decreases. Such results are to be expected as one focuses on

finer geolevels and smaller populations.

The same analysis has been performed for population under 18 across all US

counties for the 1940 Census. These are shown in Figure 6-7. This too looks quite
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Figure 6-3: Box plots for the distribution of total US population in 1940 under

different values of the privacy loss parameter [36].

Figure 6-4: Box plots for the differences between IPUMS and Census DAS for

total population counts under different values of the privacy loss parameter [36].

similar to population estimates with some issues seen for counties with smaller

populations at lower values of ε . The corresponding results for enumeration dis-

tricts are shown in Figure 6-8. Because we are now focusing on a subgroup of the

population for enumeration districts there is yet more dispersion in the results. But
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Figure 6-5: Total population for US counties under differing levels of the privacy

loss parameter [36].

Figure 6-6: Total population for US enumeration districts under differing levels

of the privacy loss parameter [36].

perhaps of some concern is that in some enumeration districts the DAS indicates a

large number of people under 18 when there are in fact very few. There are some

enumeration districts with 50 or more people where this particular application of

the DAS (with values of ε of 0.25, 0.5 and even in some cases 1.0) indicates that

100% of the population is under 18, an observation that could have implications
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Figure 6-7: Total population under 18 for US counties under differing levels of

the privacy loss parameter [36]

Figure 6-8: Total population under 18 for enumeration districts under differing

levels of the privacy loss parameter [36]

for assessments of voting age population, a component of the information needed

for the PL94 publication.

Several points should be emphasized in examining the current application of

the DAS:
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• The DAS does not unduly perturb statistics at the national, state and even

largely at the county level at all the values of ε considered.

• The dispersion seen in the IPUMS-DAS comparison for enumeration dis-

tricts is to be expected at lower values of ε . The DAS is after all meant to

protect small populations.

• The application of the DAS will degrade the utility of various statistics. This

degradation will increase as one further restricts the population by charac-

teristics such as race, voting age, etc. This illustrates a trade-off inherent

in the use of DP among privacy, accuracy and granularity of queries. The

requirements for accuracy will need to be determined in the future through

consultation with external users of the data. We discuss this trade-off further

in Section 7.

• The allocation of the privacy budget can be modified depending on the ac-

curacy requirements. For example it would be possible to allow for larger

privacy loss parameters for some tables and less for others provided the total

privacy budget is conserved.

• The current version of the DAS is a demonstration product. For example, at

the time of this writing, the implementation presented here does not benefit

from the improved accuracy of the high dimensional matrix method. Nor do

the products contain all the invariants and constraints that the Census bureau

has identified. Work is in progress to improve query accuracy to the extent

possible. As these improvements are made it will be important to continue

to reevaluate the performance of the DAS against ground truth.
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7 MANAGING THE TRADE-OFF OF ACCURACY,
GRANULARITY AND PRIVACY

Published census tabulations must balance inconsistent desiderata. They should

be accurate (i.e., published counts should be the sums of the underlying micro-

data). But tabulations should also be appropriately granular (i.e., have a high level

of detail such as block, gender, age, race/ethnicity, etc. But, as has been discussed,

pushing granularity to the extreme can create small (or even singleton) counts in

table entries (particularly in small blocks), thereby eroding privacy. Of course,

privacy could be enhanced and granularity preserved by relaxing the accuracy

requirement (as embodied in DP or swapping schemes). Alternatively, privacy

could be enhanced and accuracy preserved by reducing granularity. The situation

can be illustrated by the “disclosure triangle”, where the balance among the three

competing considerations of privacy, accuracy, and granularity varies across the

interior as shown in Figure 7-1.

No compromise will be perfect. In this section, we discuss some aspects of

managing this trade-off.

Figure 7-1: Census must balance, accuracy, granularity and privacy in its publica-

tions. It is not possible to achieve all three simultaneously.
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7.1 Risk Assessment

The use of DP is clearly promising as a way to protect census data, but it is im-

portant to recall the original motivation for its use. Its proposed use was primarily

motivated by the 17% re-identification rate assessed by Census using the 2010

tables, and thus the degree to which DP prevents re-identification needs to be sim-

ilarly explored. Technically, differential privacy as pointed out by Reiter [28] is a

guarantee

“on the incremental disclosure risks of participating (in a survey) over

whatever disclosure risks the data subjects face even if they do not

participate (in the survey)".

It does not provide an assessment of disclosure risk in and of itself. It is also not

one methodology. A number of algorithms can be applied and must be imple-

mented correctly. In the case of its use for the census there are clearly complica-

tions like invariants, implied constraints etc. that will require further work and as-

sessment. For these reasons, explicit quantification of the risk of re-identification

is still required. The choice of ε should be informed by calculations of the risk of

re-identification using the methods developed by Census and linking with current

commercially-available data but applied to microdata as processed through DP.

JASON understands that this will be significantly more difficult than the original

analysis that led to the re-identification of the 2010 Census data vulnerability. This

is because the matching of the microdata in the absence of noise to commercial

data was aided by the availability of the geographic location. The synthetic data

generated by DP algorithms will not have this feature and so matching to com-

mercial data bases will have to be performed using probabilistic record linkage

(cf. for example [9]). A very useful property of DP here is that such linkage

can be attempted at various values of ε . At very high values of ε we expect to

recover the noise-free values and so we would also verify the previously assessed

re-identification level of 17% against commercial marketing databases. But as ε
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is decreased this re-identification rate must degrade. An open question is at what

value of ε would it degrade to a value sufficiently low so as to be administratively

acceptable? While no official value of such a lower bound has ever been pro-

vided (nor would we expect one to be) presentations from Census have indicated

that the re-identification rate of 17% was viewed as something like four orders of

magnitude higher than previously assessed [27].

The fact that methods of data science will improve and commercially avail-

able data will become more comprehensive over time does not obviate the need

for an analysis that can inform the current decision. Knowing the outcomes based

on current data can help to support a choice of ε . Once some assessment of

an appropriate “upper bound" for ε based on disclosure risk is in hand, further

considerations regarding statistical accuracy for future queries on the data can be

made in ultimately deciding the level of noise to be applied to the 2020 data.

7.2 Engaging the User Community

Analyses of aggregate data involving large populations will be minimally im-

pacted by DP. Impacts will increase as one focuses on finer levels of geography

or other demographic measures. We emphasize that this is precisely the desired

impact of DP because individuals within a smaller group will be more identifiable,

and thus it is precisely this “blurring” from DP that protects the privacy of these

individuals. This aspect of DP needs to be effectively communicated to future

users of Census data.

The challenge is to better quantify the balance of privacy protection and data

utility for smaller groups. There are multiple communities with a deep interest in

the accuracy-privacy-granularity tradeoff:

State governments and redistricting commissions These bodies are responsi-

ble for the drawing of Congressional and State legislative districts. PL94-

171 requires the Census to provide to these bodies an opportunity to identify
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the geographic areas relevant to redistricting and to then deliver tabulations

of the population as well as race, race for population 18 and over (voting

age), Hispanicity and Hispanicity for those 18 and over, occupancy status

and, in 2020, group quarters population by group quarters type.

Local governments Local governments use census data for redistricting as well

as to inform assessments of public health, safety, and emergency prepared-

ness for the residents.

Residents Residents use census data to support community initiatives and to de-

cide where to live, learn, work and play.

Social scientists and economists Census data forms a foundation for demographic

studies as well as economic research.

Census has to some extent reached out to these communities through a July 2018

Federal Register Notice as well as several academic conferences [23]. The feed-

back received by Census emphasized several aspects:

• There was little understanding as to the need for application of Differential

Privacy

• Users were vocal about the need to maintain block level data so that custom

geographies could be constructed.

• Concerns were voiced about the potential loss of information for small ge-

ographic areas.

Clearly more work is needed and Census should participate actively in var-

ious fora, working with the community to characterize the scales and types of

queries that will and will not be substantially impacted at different values of ε .

For example, opportunities for stakeholders to assess accuracy of queries on 2010

census data made available at various levels of protection would go a long way

towards helping users assess the impact of DP on future analyses. In general it
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will be necessary to engage and educate the various communities of stakeholders

so that they can fully understand the implications (and the need for) DP. These

engagements should be two-way conversations so that the Census Bureau can un-

derstand the breadth of requirements for census data, and stakeholders can in turn

more fully appreciate the need for confidentiality protection in the present era of

“big data”, and perhaps also be reassured that their statistical needs can still be

met.

7.3 Possible Impacts on Redistricting

As indicated above, redistricting bodies will require population and other data for

regions with populations infused with noise from the DP process. There is con-

cern that the population estimates derived from differentially protected Census

block data will lead to uncertainties in designing state and Congressional voting

districts. Census has begun to consider these issues, for example, in their recent

end-to-end test for the state of Rhode Island [40]. We cannot discuss the variance

of the actual counts and those treated under DP quantitatively here as these data

are protected under Title 13. But, especially for the counts associated with smaller

state legislature districts, the variances may lead to concerns in verifying that the

districts are properly sized relative to the requirements of the Voting Rights Act.

JASON was briefed by Justin Levitt [18] that such district equalization is a “le-

gal fiction" since it is impossible to guarantee the accuracy and precision of the

counts; they are a snapshot in time and so are not temporally static. Overall,

the noise from block-level estimates is not expected to lead to legal jeopardy, but

could in the case where, for example, racial makeup nears thresholds that elicit

concern. Census is currently engaged with the Department of Justice regarding

this issue but at the time of the writing of this report, Census has not allayed the

Department of Justice’s concerns regarding this issue.
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7.4 Limiting Release of Small Scale Data

The trade-off between probability of re-identification and statistical accuracy is

reflected in the choice of the DP privacy-loss parameter. A low value increases

the level of injected noise (and thus also decreases probability of re-identification)

but degrades statistical calculations. Another factor that also influences the choice

of privacy-loss parameter is the number and geographical resolution of the tables

released, an aspect of granularity of the allowed queries. For example, if no block-

level data were publicly released, a re-identification “attack” of the sort described

above presumably would become more difficult, perhaps making it feasible to add

less noise and so allowing a larger value of ε .

For those public officials and researchers needing access to the finer scale

block level data, special channels in the form of protected enclaves may be re-

quired. We discuss this next in Section 7.5. This most likely cannot be a solution

for certain uses of Census data mandated by law. For example, redistricting must

be performed in a way that is transparent to the public. Today this requires using

block level populations in designing the new districts. These will be infused with

noise under differential privacy. While it is thought that these population estimates

can still be used for redistricting, their overall utility is closely tied to the value

of ε that is ultimately chosen. Too low a value of ε may lead to concern over

the totals. This seems to be a particularly difficult problem that must be solved in

close consultation with the relevant stakeholders.

7.5 The Need for Special Channels

Depending on the ultimate level of privacy protection that is applied for the 2020

census, some stakeholders may need access to more accurate data. A benefit of

DP is that products can be generated at various levels of protection depending

on the level of statistical accuracy required. The privacy-loss parameter can be

viewed as a type of knob by which higher settings lead to less protection but more
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accuracy. However, products publicly released with too low a level of protection

will again raise the risk of re-identification.

One approach might be to use technology (e.g. virtual machines, secure

computation platforms etc.) to create protected data enclaves that allow access to

trusted stakeholders of census data at lower levels of privacy protection. Inappro-

priate disclosure of such data could still be legally enjoined via the use of binding

non-disclosure agreements such as those currently in Title 13. This idea is similar

to the concept of “need to know” used in environments handling classified infor-

mation. In some cases there may emerge a need to communicate to various trusted

parties census data either with no infused noise or perhaps less infused noise than

applied for the public release of the 2020 census. Examples include the need to

obtain accurate statistics associated with state or local government initiatives, or

to perform socio-economic research associated with small populations.

At present, the only way to obtain data not infused with noise is to apply

for access via a Federal Statistical Research Data Center. These centers are part-

nerships between federal statistical agencies like the Census and various research

institutions. The facilities provide secure access to microdata for the purposes of

statistical research. As of January 2018, there were 294 approved active projects

with Census accounting for over half of these. All researchers must at present ob-

tain Census Special Sworn Status (to uphold Title 13), pass a background check

and develop a proposal in collaboration with a Census researcher.

The use of DP presents an opportunity to expand the number of people who

may access more finely-grained data but who would not need to access the origi-

nal microdata. Products could be constructed at higher levels of the privacy loss

parameter than that used in releasing Census data to the public. In a sense, the use

of DP allows Census to control the level of detail available to a researcher but in

accord with the users “need to know”, or more appropriately their need to access

data at a given level of fidelity.

If such a program is developed there may arise the need to increase the ca-
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pacity of the research data centers but at the same time the requisite security must

be enforced. The defense and intelligence communities are facing similar issues

and have responded by using cloud-based infrastructure and “thin client" termi-

nals with limited input/output capability and strongly encrypted communication

to ensure that data is appropriately protected and not handled improperly.

Transformative work in various areas of social science and economics has

resulted from the ability to access and analyze detailed Census data. For exam-

ple, Chetty and his colleagues [3] have used detailed census data to research ap-

proaches to using DP in small areas while maintaining the guarantees of DP. The

development of virtual enclaves would expand opportunities to make similar con-

tributions to a much wider cohort of researchers.
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8 Conclusion

We conclude this report with a discussion of the controversy that has arisen as

a result of the discovery of the Census vulnerability. The need to address the

Census vulnerability also brings forward aspects of a tension between laws that

protect privacy as opposed to those that require the government to report accurate

statistics. We close with a set of findings and recommendations.

8.1 The Census Vulnerability Raises Real Privacy Issues

In the view of JASON, Census has convincingly demonstrated the existence of

a vulnerability that census respondents can be re-identified through the process

of reconstructing microdata from the decennial census tabular data and linking

that data to databases containing similar information that can identify the respon-

dent. The re-identification relied on matching Census records with commercial

marketing datasets. These data providers, such as Experian, ConsumerView, and

others already have a good deal of the data Census must secure such as name, age,

gender, address, number in household, as well as credit histories, auto ownership,

purchasing, consumer tastes, political attitudes, etc. But we note that the accuracy

and granularity of their data is almost surely less than Census, and they generally

do not include race or Hispanic identity; the latter is most likely a choice, not a

fundamental constraint on information collection. In addition to this data there is

also proprietary data maintained by Facebook, the location data collected by cell

phone providers, etc.

One might argue that Census data is not of much additional utility given

the limited amount of information gathered in the decennial census. However,

many components of the data Census collects are not in the public domain and are

still viewed as private information. For example information on children is hard

to purchase commercially because its collection is enjoined by laws such as the

Children’s Online Privacy Protection Act. Other examples include race, number
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and ages of children, sexuality of household members and, in the near future, cit-

izenship status. Census has an obligation to protect this information under Title

13 and, in view of the demonstrated vulnerability, it is clear that the usual ap-

proaches to disclosure avoidance such as swapping, top and bottom coding, etc.

are inadequate. The proposal to use Differential Privacy to protect personal data

is promising although further work is requried as this report points out.

The decision to use Differential Privacy has elicited concerns from demogra-

phers and social scientists. Ruggles has argued, for example, that Census has not

demonstrated that the vulnerability it discovered is as serious as claimed. In [29]

he states

“In the end only 50% of the reconstructed cases accurately matched

a case from the HDF source data. In the great majority of the mis-

matched cases, the errors results from a discrepancy in age. Given

the 50% error rate, it is not justifiable to describe the microdata as

’accurately reconstructed’."

Reconstructing microdata from tabular data does not by itself allow

identification of respondents allow identification of respondents; to

determine who the individuals actually are, one would then have to

match their characteristics to an external identified database (includ-

ing, for example, names or Social Security numbers) in a conventional

re-identification attack. The Census Bureau attempted to do this but

only a small fraction of re-identifications actually turned out to be

correct, and Abowd ... concluded that ‘the risk of re-identification

is small.’ Therefore, the system worked as designed: because of the

combination of swapping, imputation and editing, reporting error in

the census, error in the identified credit agency file, and errors intro-

duced in the microdata reconstruction, there is sufficient uncertainty

in the data to make positive identification by an outsider impossible.”

This statement may reflect the state of affairs prior to the re-identification ef-
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fort of the Census discussed in Section 4.1 that succeeded in re-identifying 17% of

the US population in 2010. An earlier re-identification attempt by the Census had

some issues matching the Census geo-ids with those of commercial data. Once

this was understood and fixed, the results discussed in Section 4.1 were obtained.

Ruggles also argues that use of differential privacy will mask respondents

characteristics, data that are valuable in demographic and other studies. He cor-

rectly asserts that masking characteristics is not explicitly required under the law.

But Census is prohibited from publishing

“any representation of information that permits the identity of the re-

spondent to whom the information applies to be reasonably inferred

by either direct or indirect means...”

Given the level of re-identification that was achieved in the Census vulnerability

study, it is certainly arguable that releasing tabular information without noise such

that the microdata can be reconstructed and possibly matched with external data

makes the tabular information just such a representation.

Ruggles further argues that Census would not validate any potential re-iden-

tification. This is true, but the fact remains that a commercial data provider can

still perform the re-identification attack, then perform a probabilistic record match

(perhaps using data held out from the re-identification), and, if the result looks

sufficiently promising, add this to their database along with extra information on

race, children, sexuality, etc. The argument that Census will not confirm the re-

identification is true whether one performs any disclosure avoidance or not. But it

is still the responsibility of Census not to abet such re-identification. Finally, there

is the issue of whether Census data (as opposed to ACS data) is particularly sen-

sitive. It can be argued that knowledge of various characteristics combined with

location data could certainly be abused in various instances and so this provides

further support that Census should enforce privacy of census data.

Even more concern has been voiced in the social science and demographer
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communities regarding the possibility that the ACS tables and microdata sample

may also now require similar protection. To date Census has not established that

a similar vulnerability exists for the ACS data. Intuitively, it should be harder to

re-identify this data as it is a small sample of the population and what is released is

carefully chosen so as to preserve confidentiality. In any case, no plan by Census

exists at present to apply methods of formal privacy to the ACS, and no changes

are envisioned in the format for data release at least until 2025 when the issue will

be reconsidered (cf. for example, [33]).

8.2 Two Statutory Requirements are in Tension in Title 13

It is to be expected that advances in technology may introduce tensions or con-

flicts among statutory provisions that were seen as conflict-free when they were

enacted in the past. Under the Executive Branch’s broad powers to interpret and

apply the law, responsibility falls on Executive agency government officials to set

policies that attempt to “square the circle” in a defensible manner, even when no

perfect solution is possible. Such policies, both as to the procedure of how they are

set and their substance, are potentially subject to judicial review, e.g., under the

Administrative Procedures Act (5 USC Section 500). The resolution of statutory

conflicts is thus ultimately a matter for the courts, or for Congress if it chooses to

change the law.

In the above light, we examine two statutory provisions of Title 13. Section

214 (“Wrongful disclosure of information”) provides

“[No official] may make any publication whereby the data furnished

by any particular establishment or individual under this title can be

identified...”

There is little or no case law to guide us in the interpretation of what, at first sight,

seems a clear provision. But how clear is it? Does “whereby” mean by itself
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without reference to other sources of (e.g., commercial) data? Or does “whereby”

mean may not add, even incrementally in the smallest degree, to the likelihood

that an individual can be identified using commercially available data? Or is it

something in-between? What about “can be identified”? Does this mean identified

with certainty? Or does it mean identified probabilistically as more likely than

other individuals? And, if the latter, what is the quantitative level of probability

that is prohibited?

Census has traditionally adopted very strict interpretations of Section 214 for

a host of good reasons, including that doing so encourages trust and participation

in the census. Section 141 (Public Law PL 94-171) specifies a process by which

the states propose, and the Secretary of Commerce agrees to, a geographical spec-

ification of voting districts within each state3. It then requires that

“Tabulations of population for the areas identified in any plan ap-

proved by the Secretary shall be completed by him as expeditiously as

possible after the decennial census date and reported to the Governor

of the State involved and to the officers or public bodies having re-

sponsibility for legislative apportionment or districting of such State

... ”

The plain-language meaning of “tabulation of population” is fairly obvious: one

counts the number of persons satisfying some required condition(s) and enters

that number into a table. At the time of the 2010 Census, and with the disclosure

avoidance procedures adopted at that time, there seemed to be no significant con-

flict between the statutory requirements of Section 214 and Section 141. Swap-

ping, for example, preserves population counts in any geographical area. To the

extent that swapped individuals were matched for other characteristics (e.g., vot-

ing age), counts of persons with matched characteristics would also be preserved.

Finally, the use of swapping may allow for the use of a larger value of ε used for

3Technically the law says "...the geographic areas for which specific tabulations of population

are desired". This has been identified as blocks and voting districts since the law was passed
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publication of the various tabulations. This would have to be determined through

an empirical assessment of re-identification risk performed both with and without

swapping.

Census has determined, and JASON agrees, that swapping alone is an insuf-

ficient disclosure avoidance methodology for the 2020 Census. The proposed use

of DP in the 2020 Census, which is by now almost certain, will bring the mandates

of Section 214 and Section 141 into conflict to a substantially greater degree than

previously. Although Census proposes to impose invariants along a backbone of

nested geographical regions, the revised state voting districts mayh not be on this

backbone, and hence will be subject to count errors whose magnitude depends on

the amount of DP imposed (i.e., the choice of ε).

There is no perfect resolution of the conflict. JASON heard the opinion of

some experts outside of government that inaccuracies as large as 1000 persons in

state voting district counts are acceptable. However, we also heard that, in many

cases, the actions of state officials can be interpreted as indicating a mistaken be-

lief that the counts are much more accurate than this. We are not aware of any case

law or judicial guidance on the issue. Thus, Census will need to adopt a policy

that is a sensible compromise between conflicting provisions of law, recognizing

that the ultimate adjudication of such a policy - should it prove to be controversial

- lies elsewhere. Too small a value of ε , while more perfectly satisfying Section

214, satisfies Section 141 less perfectly, both being statutory requirements.

We conclude this report with JASON’s findings and recommendations.

8.3 Findings

8.3.1 The re-identification vulnerability

• The Census has demonstrated the re-identification of individuals using the

published 2010 census tables.
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• Approaches to disclosure avoidance such as swapping and top and bottom

coding applied at the level used in the 2010 census are insufficient to prevent

re-identification given the ability to perform database reconstruction and the

availability of external data.

8.3.2 The use of Differential Privacy

• The proposed use by Census of Differential Privacy to prevent re-identifi-

cation is promising, but there is as yet no clear picture of how much noise

is required to adequately protect census respondents. The appropriate risk

assessments have not been performed.

• The Census has not fully identified or prioritized the queries that will be

optimized for accuracy under Differential Privacy.

• At some proposed levels of confidentiality protection, and especially for

small populations, census block-level data become noisy and lose statistical

utility.

• Currently, Differential Privacy implementations do not provide uncertainty

estimates for census queries.

As has been seen in Section 6, as the geographic resolution becomes finer,

DP will by design affect query results. In such cases, there will at least

be a need to inform users of the variances associated with a given query.

While the amount of noise injected into tables is known as a result of the

open publication of the privacy budgets, the variance in a query is also af-

fected by the size of the population involved in answering that query, the

use of the high-dimensional matrix method, the enforcement of invariants,

etc. complicating the error analysis. Error assessment could be accom-

plished by performing multiple instances of a query and then assessing the

variation of the results, but this requires re-accessing the data and so poten-

tially violating the DP bounds. Ashmeade [2] has proposed an approach to
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estimate query error by using the post-processed results and then assessing

variance using those results. This has the advantage that one need not access

the confidential data. Ashmeade presents some empirical evidence that, for

the most part, this approach yields sensible bounds, but for small privacy

budgets occasional outliers occur and the results of such an estimate vary

widely from the true results obtained using Monte-Carlo methods. This

issue clearly requires further work.

8.3.3 Stakeholder response

• Census has not adequately engaged their stakeholder communities regard-

ing the implications of Differential Privacy for confidentiality protection

and statistical utility.

• Release of block-level data aggravates the tension between confidentiality

protection and data utility.

• Regarding statistical utility, because the use of Differential Privacy is new

and state-of-the-art, it is not yet clear to the community of external stake-

holders what the overall impact will be.

8.3.4 The pace of introduction of Differential Privacy

• The use of Differential Privacy may bring into conflict two statutory re-

sponsibilities of Census, namely reporting of voting district populations and

prevention of re-identification.

• The public, and many specialized constituencies, expect from government

a measured pace of change, allowing them to adjust to change without ex-

cessive dislocation.
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8.4 Recommendations

8.4.1 The re-identification vulnerability

• Use substantially equivalent methodologies as employed on the 2010 census

data coupled with probabilistic record linkage to assess re-identification risk

as a function of the privacy-loss parameter.

• Evaluate the trade-offs between re-identification risk and data utility arising

from publishing fewer tables (e.g. none at the block-level) but at larger

values of the privacy-loss parameter.

8.4.2 Communication with external stakeholders

• Develop and circulate a list of frequently asked questions for the various

stakeholder communities.

• Organize a set of workshops wherein users of census data can work with

differentially private 2010 census data at various levels of confidentiality

protection. Ensure all user communities are represented.

• Develop a set of 2010 tabulations and microdata at differing values of the

privacy-loss parameter and make those available to stakeholders so that they

can perform relevant queries to assess utility and also provide input into the

query optimization process.

• Develop effective communication for groups of stakeholders regarding the

impact of Differential Privacy on their uses for census data.

• Develop and provide to users error estimates for queries on data filtered

through Differential Privacy.
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8.4.3 Deployment of Differential Privacy for the 2020 census and beyond

• In addition to the use of Differential Privacy, at whatever level of confi-

dentiality protection is ultimately chosen, apply swapping as performed for

the 2010 census so that no unexpected weakness of Differential Privacy as

applied can result in a 2020 census with less protection that 2010.

There is always the possibility that unforeseen issues or implementation

errors may lead to violations of the privacy protections that DP aims to

enforce. Such things have happened in the past, for example, in the crypto-

graphic community. JASON recommends that Census apply the traditional

disclosure avoidance procedures applied in the 2010 census and then ap-

ply DP on top of this dataset. The advantage in JASON’s view is that one

can communicate that DP is a proposed improvement over traditional ap-

proaches and, should there arise any issue with DP, the previously used

protections will still be in force. The software infrastructure for the tradi-

tional disclosure avoidance approach would have to be reconstructed and

this could prove to be a challenge.

• Defer the choice of the privacy-loss parameter and allocation of the detailed

privacy budget for the 2020 census until the re-identification risk is assessed

and the impact on external users is understood.

• Develop an approach, using real or virtual data enclaves, to facilitate access

by trusted users of census data with a larger privacy-loss budget than those

released publicly.

• Forgo any public release of block-level data and reallocate that part of the

privacy-loss budget to higher geographic levels.

• Amid increasing demands for more granular data and in the face of conflict-

ing statutory requirements, seek clarity on legal obligations for protection

of data.

JSR-19-2F 2020 Census 98 March 29, 2020



A APPENDIX: Information Theory and Database
Uniqueness

Je n’ai fait celle-ci plus longue que parce que je n’ai pas eu le loisir

de la faire plus courte.

(I’d not have made this [letter] so long, had I had time to make it

shorter.)

Blaise Pascal, Lettres Provinciales, 4 Dec. 1656.

In this appendix we examine the Dinur-Nissim (DN) results in the context

of information theory. As a reminder, DN idealize a database as a string d =

(d1, . . . ,dn) of n bits, and a noiseless query as the sum of a specified subset of

those bits; that is to say, the answer to the query is

A(q) = ∑
i∈q

di ≡wT
q d (A-1)

In the second form above, the string d is represented by a column vector d, whose

components are either 0 or 1, while wT
q is a row vector of weights applied to the

bits before summation; these weights are also 0 or 1, the total number of nonzero

weights in wq being denoted #q, the size of the subset of bits that this query

interrogates. Clearly A(q) is an integer (a count) in the range {0, . . .#q}. There

are of course 2n possible distinct queries.

A.1 Noiseless Reconstruction via Linear Algebra

Each noiseless query constitutes a linear constraint on the n bits, and distinct

queries obviously constitute linearly independent constraints. Here “linear” and

“independent” are used in the sense of linear algebra, which therefore guaran-

tees that n independent queries are sufficient to reconstruct d. Since, however,

each component of d (viewed as a vector in R
n) is restricted to only two possible

values, reconstruction may be possible with fewer than n queries.
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In what follows, we will often speak of the “probability” of the value of a

given bit or bits in the database. In the real world, the noiseless database is fixed,

so its bits are not random variables. But in order to be able to apply information-

theoretic arguments to the noiseless case, let’s imagine that we are designing a

reconstruction algorithm to be applied to the ensemble of all possible databases of

n bits. In this ensemble, each bit takes on the values 0 or 1 with equal frequencies

(= 1/2). To the extent that the actual database can be regarded as having been

chosen “at random,” the values of its bits can be regarded as independent random

variables.

With this prolog, consider a reconstruction scheme in which we first query

n/2 disjoint pairs of bits: e.g., the kth query qk interrogates bits 2k−1 and 2k, for

k ∈ {1, . . . ,n/2}. In the average over all 2n possible data bases, since each of the

two bits interrogated is ±1,

A(qk) =

⎧⎪⎨
⎪⎩

0 with probability 1/4,

2 with probability 1/4,

1 with probability 1/2

When either of the first two possibilities is realized, both bits interrogated by qk

are determined. Thus we may expect to reconstruct n/2 of the bits with these n/2

queries—a plausible result! But, we now have partial information about the re-

maining n/2 bits that belong to “ambiguous” pairs where A(qk) = 1: namely, the

two bits of such a pair must be distinct. There will be approximately n/4 ambigu-

ous pairs. Thus a further ∼ n/4 queries that interrogate only the first member of

each such pair will resolve the remaining ambiguities. By this argument, we may

reconstruct the database with no more than ∼ 3n/4 queries. This is fewer than

would suffice by the linear-algebra argument, but not by much; which suggests

that the linear-algebra argument, though not rigorous, may be useful. As we show

in the following subsections, however, it may be possible to do still better—i.e.

fewer queries needed for noiseless reconstruction—by a logarithmic factor.
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A.2 Information: An Introductory Example

To further illustrate the point, take the simple case of a 3-bit database. Let (B1,

B2, B3) represent these bits, Bi ∈ {0,1}, each with probabilities Pr(Bi = 0) =

Pr(Bi = 1) = 1
2 . Consider two queries, QL = B1 +B2 (which interrogates the two

leftmost bits) and QR = B1 +B2. There are of course 8 possible databases, and

three possible values for each query, as shown in Table A-4 below:

B1 B2 B3 QL QR

0 0 0 0 0

0 0 1 0 1

0 1 0 1 1

0 1 1 1 2

1 0 0 1 0

1 0 1 1 1

1 1 0 2 1

1 1 1 2 2

Table A-4: Two queries on a 3-bit database

All 8 rows are equally probable. The entropy of the joint distribution (probability

mass function or PMF) of the three bits is therefore

H(B1,B2,B3) =− ∑
B1,B2,B3

P(B1,B2,B3) log2 P(B1,B2,B3) =−8× 1

8
log2

1

8
= 3 ,

as one might expect. Notice that in 6 out of 8 cases, the values of the three bits

are fully determined by the values of (QL,QR). The exceptions are those in which

QL = QR = 1, there being two bit combinations 010 and 101 that give this result.

So in 3/4 of the cases, two queries suffice to determine the bits, while in the

remaining 1/4, a third query is needed. Thus the average number of queries

needed to reconstruct the database is4

3

4
×2+

1

4
×3 = 2.25 queries on average

4One might ask whether it’s possible to do better with a different pair of initial queries. There

are 28 possibile pairs [ 23 × (23 −1)/2], but none does better than this pair.
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Another way to look at this is to say that in 3/4 of the cases, the two queries yield

3 bits worth of information; while in the remaining 1/4 of the cases, the queries

leave one bit’s worth of ambiguity (the choice between databases 010 and 101), so

that then in effect they yield only 2 bits of information. Thus the average number

of bits of information yielded by these two queries is

3

4
×3+

1

4
×2 = 2.75 bits of information on average

The joint PMF of (QL,QR), which follows from Table A-4, is

QL QR probability

0 0 1/8

0 1 1/8

1 0 1/8

1 1 2/8

0 2 0

2 0 0

1 2 1/8

2 1 1/8

2 2 1/8

Table A-5: Joint probability mass function of two queries.

The entropy of these two variables is therefore (combinations that have zero prob-

ability being omitted from the sum)

− ∑
QL,QR

P(QL,QR) log2 P(QL,QR) =−6× 1

8
log2

1

8
− 1

4
log2

1

4
= 2.75

Evidently, the entropy of the PMF of (QL,QR) coincides with the average number

of bits of information gained from these two queries. This generalizes.

Looking ahead to Section A.4, the covariance of these two queries is

C = cov(QL,QR) =
1

4

(
2 1

1 2

)
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and the Gaussian approximation described there predicts that

H(QL,QR)≈ 1

2
log2 det(2πeC)≈ 2.88667

This is an overestimate (2.88667 instead of 2.75), presumably because the Gaus-

sian approximation is not accurate for queries involving small numbers of bits.

Yet it is qualitatively correct: 2 well-chosen queries on 3 bits yield > 2 but < 3

bits of information on average.

A.3 Information Gained Per Query

In the examples above, why do we do better by querying two bits at a time, and

how can this be generalized?

Querying a single bit—noiselessly—reaps exactly one bit of information,

because there are two possible outcomes (0 or 1), and averaged over all possible

databases, these outcomes have equal frequency.

Consider now a query q that sums #q = m ≥ 1 bits. There are now m+1 pos-

sible values for the answer A(q) = a ∈ {0, . . . ,m}. In the data-base ensemble, the

probabilities or frequencies frequencies { fa} of these outcomes have the binomial

distribution B(m,1/2), meaning that

fa = 2−m
(

m
a

)
, ⇒ ∑

a
fa = 1. (A-2)

The formal information gained from this query is then

I(A) =−∑
a

fa log2 fa (A-3a)

≈ 1
2 log2 m+ 1

2 log2(πe/2)︸ ︷︷ ︸
≈1.047096

≡ IG(A) (A-3b)

The second line is obtained by approximating the binomial distribution as a Gaus-

sian (with mean E(A) = m/2 and variance m/4). Table A-6 shows that the Gaus-

sian approximation is quite good even for small m—but not for m = 0, a point that

will be important in Section A.7.
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m I IG

0 0 −∞
1 1 1.047096

2 3/2 1.547096

16 3.04655 3.047096

128 4.547088 4.547096

Table A-6: Average information gain, in bits, from a single noiseless query that

sums m bits. Second column is exact; third column is the Gaussian approximation.

What we have called I(m) is also the entropy H(X) of a binomially dis-

tributed random variable X ∼ B(m,1/2). We use the notation I rather than H in

this instance because we think of it as measuring the average knowledge gained

after a query, rather than the uncertainty in the outcome of the query. But regard-

less of the interpretation, the mathematical rules governing information/entropy

are the same.

A.4 Information Gained from Multiple Noiseless Queries

The preceding discussion shows that the most informative single query is the sum

of all n bits: the information gained is I(n)≈ 0.5log2(n) for n � 1. But of course

this is not enough to reconstruct all n � log2 n bits. Clearly reconstruction re-

quires multiple queries; but what is the minimum number? One may speculate

that since a single query q that sums #q ∼ O(n) bits yields O(logn) bits of in-

formation, it should follow that the minimum number of such queries required

is O(n/ logn). But this is not obvious, because queries are not independent un-

less they interrogate disjoint subsets of the n bits. Therefore their information

will not simply add. In the first two schemes above, the subsets were indepen-

dent: those queries interrogated individual bits or disjoint pairs of bits. But such

“small” queries [#q ∼ O(1)] yield less information (at least individually) than

“large” queries [#q � 1]. And for n � 1, since we will need at least O(n/ logn)

queries to reconstruct, they cannot be entirely disjoint if they are individually
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large.

Consider now two queries q1 and q2, and let q1 ∩ q2 be the subset of bits

that they have in common. If these queries are large, i.e., min(#q1,#q2)� 1, then

by the Central Limit Theorem, they are well approximated as Gaussian random

variables, with means E(qi) =
1
2#qi for i ∈ {1,2}, and covariance matrix

C =
1

4

(
#q1 #(q1 ∩q2)

#(q1 ∩q2) #q2

)

(The prefactor comes from the fact that the mean-subtracted bit values are ±1
2 ,

whence the variance of individual bits is 1
4 .) It is easily seen that if the “informa-

tion” of a multivariate Gaussian density function

P(x)dx=
1√

det(2πC)
exp

(
−1

2
xTCx

)
dx

is defined by −∫
P(x) log2 P(x)dx, then this information is

I(C) = log2

√
det(2πeC) , (A-4)

This reduces to the Gaussian approximation of Section A.3 for a single query,

where C → m/4, a scalar. For multiple disjoint queries, so that C is diagonal,

eq. (A-4) says that the total information is the sum of the informations gained

from each query separately. If the queries are not disjoint, then at least some

of the off-diagonal entries of C are positive, and none are negative, whence the

determinant of C is less than the product of its diagonals: this means that the total

information is less than the sum of the information obtained from the individual

queries.

The goal now is to find the smallest rank r (i.e., the smallest number of

queries) for which I(C)> n, with the restriction that

C =
1

4
W TW , (A-5)

for some n×r matrix W whose entries are 0 or 1: each column of W corresponds

to a query vector wq. If the information I(C) > n, we can expect to be able to

reconstruct “most” n-bit databases with these r queries.
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Suppose, to begin with, that the entries of the matrix W are chosen at ran-

dom. In this case, approximately half of the elements in each column (i.e., in each

query vector) would be 1, and the remainder 0; but the excess or deficit of 1s over

0s in each column would fluctuate by O(
√

n). Any two distinct columns of W

would have approximately n/4 1s in common, so that ∑k WikWk j ≈ (n/4)(1+δi j).

The elements of the covariance matrix would then be

Ci j =

{
n/8+O(

√
n) if i = j ∈ {1, . . . ,r}

n/16+O(
√

n) if i �= j
(A-6)

The O(
√

n) are random in sign and have mean 0, so that it might be hoped that in

computing log2 detC for sufficiently large n, we could neglect them compared to

the O(n) terms. The matrix with these terms neglected is

C̄ =
n

16
(Ir +Jr) , (A-7)

in which Ir is the r × r identity matrix, and the matrix Jr is entirely filled with

1s (sometimes called the “unit” matrix, although this risks confusion with the

identity). Since Ir commutes with Jr, the two matrices can be simultaneously

diagonalized, and their eigenvalues simply add.

It is not hard to see that the eigenvectors of J have the form

vω = (1,ω,ω2, . . . ,ωr−1)T

with ωr = 1, i.e. ω is any of the rth roots of unity. These eigenvectors are orthog-

onal (v†
ωvω ′ = rδω,ω ′), as is familiar from the Discrete Fourier Transform. For

the trivial root ω = 1, the eigenvalue of J is r, while all of the r− 1 other roots

correspond to zero eigenvalues. Therefore the eigenvalues of I+J are

{1, . . . ,1︸ ︷︷ ︸
r−1 times

, 1+ r},

and it follows that

I(C̄)≡ 1
2 log2 det(2πeC̄)

= 1
2r log2

(πe
8

n
)
+ 1

2 log2(1+ r) (A-8)

≈ 1
2r(log2 n+0.094) for r,n � 1.
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A.5 m Sequences and Hadamard Matrices

The replacement

C → C̄

is an approximation. But we can obtain the determinant (A-7) exactly in the spe-

cial cases that n = 2k − 1 through a cunning pseudorandom choice of the query

vectors: namely, m-sequences, a.k.a. maximum-length Linear Feedback Shift

Register (LFSR) sequences [11]. In the form we need them here, they are pe-

riodic sequences of bits bi ∈ {0,1} with period n = 2k − 1 and autocorrelation

function

A( j)≡
n−1

∑
i=0

bibi+ j =

{
(n+1)/2 when j ≡ 0 mod n
(n+1)/4 otherwise

(A-9)

If we populate the columns of W with distinct circular shifts of such a sequence,

then C will have almost exactly the form (A-7), the only change being that n →
n+1 (an even number). Then the information gained from these r queries will be

exactly as in the second line of (A-8), except for the same replacement.5

Hadamard matrices yield similarly good correlation properties [11]. By def-

inition, a Hadamard matrix of order n is an n×n matrix H whose entries are ±1

and whose rows are orthogonal, so that HHT = nI , where I is the n×n identity.

The order n must be 1, 2, or a multiple of 4; it is conjectured but not proved that

Hadamard matrices exist for every multiple of 4. There are explicit constructions

for special cases, however, and in particular for n = p+ 1 where p is a prime of

the form 4k−1 (i.e. n ∈ {4,8,12,20,24,32,44,48,60, . . .}). Importantly, the first

row (and first column) of the latter sort6 of Hadamard matrix is all 1s, so it follows

from the definition that each of the remaining rows has an equal number of +1s

and −1s. It is then not hard to see that if we replace the elements Hi j of such a

matrix with

Wi j =
1

2
(Hσ( j)i +1) ,

5Exact, that is, within our Gaussian approximation for the binomial query outcomes.
6a “cyclic” Hadamard matrix [11]
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so that the jth column of W is the σ( j)th row of H with every −1 replaced by 0,

then the elements of W TW are

n

∑
i=1

Wi jWik =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n j = k & σ( j) = 1,

n/2 j = k & σ( j) �= 1,

n/2 j �= k &min(σ( j),σ(k)) = 1,

n/4 j �= k &min(σ( j),σ(k)) �= 1.

(A-10)

Here σ() is any permutation of {1,2, . . . ,n} But we do not have to use the com-

plete permutation: we can use a part of it that selects some subset of r rows from

H , in which case W becomes n× r, while the covariance matrix C ≡ 1
4W

TW

becomes r×r. If this subset does not include the first row of H (the row that is all

1s), then C has exactly the form (A-7), and hence the same eigenvalues and de-

terminant. If the first row of H is included, then the eigenvalues and determinant

can be found by Cholesky decomposition C =LLT , where L is lower triangular.

The diagonal entries of L are the square roots of the eigenvalues of C. It

turns out that when the first column of W is the first row of H , the first diagonal

of L is
√

n/2, all the rest are
√

n/4, and the rest of L vanishes except for the first

column, in which all the elements after the first are also
√

n/4. In this case, all of

the eigenvalues of C coincide with those of (A-7) (i.e., they are n/16) except for

the first, which is n/4 in this case, but n(r+ 1)/16 in (A-7). So if r < n (fewer

queries than bits), it is slightly advantageous not to use the first row of H , i.e. not

to include the query that sums all of the bits.

A.6 The Minimal Number of Queries

We have seen that, within our Gaussian approximation at least, and neglecting

O(1) corrections, the information gained from r ≤ n noiseless queries on an n-bit

database can be made as large as

max(Ir)≈ r
2
[log2 n+ log2(πe/8)] .

On the other hand, it follows from eq. (A-3a) that the maximum information ob-

tained from a single query is max(I1)� log2 n+ log2(πe/2): we do best by sum-
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ming all of the n bits. It would seem therefore that the redundancy among multiple

queries can be made almost neglegible, i.e. max(Ir)≈ r max(I1): the information

contributed by distinct queries is almost additive, apart from the different con-

stants log2(πe/2) vs. log2(πe/8).

In the absence of prior constraints on the bits in the database, we must have

Ir ≥ n in order to determine all of the bits. Thus

The minimum number of noiseless queries needed to reconstruct an

n-bit database is at least 2n/ log2 n for large n.

We have tested this by numerical experiments with modest values of n and

r, as shown in Table A-7. Using a modified hill-climbing technique, we have

constructed a set of near-optimal (better than random) queries7. As shown in the

fourth column, most of the 2n possible databases answer our �2n/ log2 n� queries

uniquely, but not all. As we add queries, the number of ambiguous cases appears

to drop exponentially. The third column shows the minimum number of queries

needed to resolve all ambiguities. The evidence of this table suggests that the

r ∼ 2n/ log2 n criterion is relevant, but because exhaustion over all 2n databases

is impractical for much larger n, it is also consistent with the possibility that the

minimum r/n needed to resolve all ambiguities asymptotes to a constant. This is

what was found empirically in Section 4 but it’s important to note that there is no

guarantee that the least squares approach used there is optimal in the Shannon or

information-theoretic sense.

A.7 Noisy Single Queries

Instead of the exact answer (A-1) to a query, we receive a noisy version Â(q) =

wT
q d+Nq, where Nq is a random variable independent of the database and query

7by attempting to maximize W TW , with the restriction that W is n× r and its entries are all

0 or 1
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n �2n/ log2 n� rmin uniques

8 6 6 98.4%

9 6 6 100%

10 7 7 100%

11 7 8 96.9%

12 7 9 88.7%

13 8 9 96.1%

14 8 9 94.6%

15 8 9 90.1%

16 8 10 83.5%

17 9 11 93.8%

18 9 13 88.0%

19 9 13 79.3%

20 10 14 95.8%

21 10 14 90.9%

Table A-7: Numerical experiments on noiseless queries of small databases. 2nd

column is the smallest integer ≥ 2n/ log2 n. 3rd column is the minimum number

of optimized queries needed to determine all 2n databases uniquely. 4th is the

fraction that are uniquely identified by �2n/ log2 n� queries.

vectors. For convenience, the noise variables Nq and Nq′ belonging to distinct

queries q and q′ will be assumed independent and identically distributed.8

Presumably also there is a rule that a given query can be asked at most once—

or if not, that the value taken by Nq is the same every time that query is asked: for

if not, it would be possible to beat down the noise by asking the query repeatedly

and averaging the answers.

The concept of mutual information I(X ,Y ) is useful to express the knowl-

edge that one has of a random variable X given an observation of a second variable

Y , which for this application is a noisy version of X (Fig. A-1).

8This is not essential. In fact, the High Dimensional Matrix Method used by Census [19])

creates correlations among the Nq. As long as the noise remains independent of the database, the

effect is to replace the noise covariance matrix σ2
NI in eq. (A-14) with some other (symmetric)

matrix.
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Figure A-1: Communication over a noisy channel. X ranges over transmitted

signals, and Y over the noisy versions received. The entropy H(X) is the minimum

number of noiseless bits required to specify the value of X , and similarly for H(Y ).
H(X |Y ) is the average uncertainty (∼unknown bits) in X given a measurement of

Y . The difference I(X ,Y ) = H(X)−H(X |Y ) = H(Y )−H(Y |X) is the mutual

information.

The formal definition for discrete variables is

I(X ;Y ) = ∑
X=x

∑
Y=y

pX ,Y (x,y) log2

pX ,Y (x,y)
pX(x)pY (y)

. (A-11)

Here the sums are taken over all possible values x and y of X and Y respectively,

while pX , pY , and pX ,Y are the probability mass functions (PMFs) for X alone, for

Y alone, and for (X ,Y ) jointly. It can be shown that I(X ;Y )≥ 0, with equality iff

X and Y are independent.

A small example may increase confidence in this definition. Suppose X rep-

resents a single-bit message with equally frequent values {0,1}, and Y = X +N

with N a noise bit that is also equally likely to be 0 or 1. Therefore Y ∈ {0,1,2}.

The PMFs are described by the following table:
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x y pX(x) pY (y) pX ,Y (x,y)

0 0 1/2 1/4 1/4

0 1 1/2 1/2 1/4

0 2 1/2 1/4 0

1 0 1/2 1/4 0

1 1 1/2 1/2 1/4

1 2 1/2 1/4 1/4

The third and fourth entries in the last column (for the joint PMF) vanish, because

for example if X = 0 then Y = 2 is impossible, as the noise bit is at most 1. If

Y = 0 or Y = 2, then X is determined (as 0 or 1, respectively). Taken together,

these outcomes happen half the time: pX ,Y (0,0)+ pX ,Y (1,2) = 1/2. In case Y = 1,

however, X is equally likely to be 0 or 1. So observing Y yields perfect knowledge

of X half the time, and the rest of the time no information at all. We may therefore

say that observing Y is worth half a bit of knowledge about X on average. If

one works through the definition (A-11) using the values in this table,9 one finds

indeed that I(X ;Y ) = 1/2.

A general theorem about mutual information is[22]

I(X ;Y ) = H(X)−H(X |Y ) = H(Y )−H(Y |X) ,

in which H(X) and H(Y ) are the entropies10 of X and Y separately, while H(X |Y )
is the residual entropy of X after Y is observed, and similarly for H(Y |X). This

is illustrated in Fig. A-1. It is easily seen that if X and N are independent, then

H(X +N|X) = H(N). Therefore,

I(X ; X +N) = H(X +N)−H(N) when X is independent of N. (A-12)

Suppose for example that X and N are independent univariate Gaussian vari-

ables, so that Y = X +N is also Gaussian, and varY = varX + varN. Since the

9It is understood that 0 · log2 0 = 0, i.e. cases for which pX ,Y (x,y) = 0 are excluded from the

sum.
10See the discussion of entropy vs. information in Section A.3
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entropy of a Gaussian is11 H(X) = 1
2 log2(2πevarX), and similarly for H(Y ) and

H(N), it follows that

I(X ;Y ) = 1
2 log2

(
1+

var(X)

var(N)

)
. (A-13)

The logarithm here is strongly reminiscent of the factor log2

(
1+

Psignal

Pnoise

)
in Shan-

non’s channel capacity theorem [31].

To relate this result to the previous discussion of noiseless queries, we need

to understand what happens as the variance of the noise tends to zero. In this limit,

the Gaussian approximation breaks down. The exact query results (X) are actually

integers with a binomial distribution. If noise with var(N)� 1 is added to such

queries, the exact result (X) can be obtained from X +N by rounding to the nearest

integer with negligible probability of error. So we should expect I(X ,X +N) to

reduce to H(X), which is finite, as var(N) → 0. However, eq. (A-13) presumes

that both X and N take real values, and it yields an infinite result as var(N)→ 0

because arbitrarily close real numbers can always be distinguished.

Suppose instead that both X and N are discrete independent independent

variables, for example with binomial distributions B(m,1/2) and B(m′,1/2) re-

spectively. Then Y = X +N is distributed as B(m+m′,1/2). Also12 var(X) =

m/4, var(N) = m′/4, and var(Y ) = (m+m′)/4. If m′ ≥ 1, then the Gaussian ap-

proximations for H(N) and H(Y ) are quite accurate, as shown by Table (A-6),

so that eq. (A-13) is a good approximation to the mutual information. But in

the noiseless case m′ = 0, we have to use the exact definition in the first line of

eq. (A-3a) for the entropy of a binomial; this yields H(N) = 0. Then it follows

from eq. (A-12) that I(X ;Y )→ I(X ;X) = H(X), as we expect, rather than +∞ as

the Gaussian approximation (A-13) would predict in the noiseless limit.

11For a multivariate Gaussian, this becomes H(X) = 1
2 log2 det[2πecov(X)], where cov(X) is

the covariance matrix of X
12Recall that if X ∼ B(n, p), where p is the probability of “success” on a single trial and n is the

number of trials, that var(X) = np(1− p).
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A.8 Multiple Noisy Queries

This generalizes directly to multiple queries, represented by a vector X when

exact, but corrupted by a noise vector N with diagonal covariance cov(N) =

σ2
NI . Provided σ2

N � 1/4, we may use the Gaussian approximation, so that

I(X,X+N)≈ 1
2 log2 det[σ−2

N C+I]. (A-14)

in which C = cov(X) is determined as before by the n × r query matrix W

[eq. (A-5)], and I is the r× r identity.

The result (A-14) should be interpreted as the total information gathered by

these queries in the presence of noise. As we’ve seen in Section A.4, for sensible

(e.g. random) choices of the query matrix W , all but one of the eigenvalues of C

is approximately equal to n/16 if n ≥ r � 1. It follows that the net information

gathered on average is

Inet ≈ r−1

2
log2

(
1+

n
16σ2

N

)
+

1

2
log2

(
1+

n(r+1)

16σ2
N

)
. (A-15)

(The second logarithm comes from the one nonzero eigenvalue of the matrix J

discussed above.) If there is to be hope of reconstructing the database, the infor-

mation Inet must be ≥ n, the number of bits to be reconstructed. If the standard

deviation of the noise σN >
√

n/48, however, then the logarithm < 2, in which

case we will not have enough information even at r = n—i.e., even if we make as

many queries as bits. This is reminiscent of DN’s result to the effect that O(
√

n)

noise is sufficient to prevent an “algebraically bounded” adversary from recon-

structing the database.

But now suppose that we are allowed to make r � n queries. This is most

interesting in the large-noise limit, i.e. where σ2
N is large compared to all of the

eigenvalues of C. Note by the way that C becomes singular for r > n, because

it is constructed from W , which has rank min(r,n). However, the combination

σ2
NC+I is nonsingular, and for sufficiently large σ2

N , the expansion

loge det(I+ εM)→ εTrace(M)+O(ε2) as ε → 0 at fixed M
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allows us to write

Inet ≈ log2 e
2σ2

N
Trace(C)≈ nr log2 e

16σ2
N

(σ2
N � n/16) (A-16)

Hence, even if the signal-to-noise ratio per query is very small, a sufficient number

of queries—specifically, r � 16σ2
N/ loge 2—should gather enough information to

determine the database. We have not checked this prediction experimentally but

we do confirm that it is possible to gather sufficient information to reconstruct the

DN database provided we can issue enough queries. Note that this result indicates

one will always recover the bits if the variance of the noise is held fixed as the

queries are issued.

A.9 Reconstruction

So far we’ve talked about gathering enough information, through queries, to de-

termine the bits in a database; but we haven’t provided a method for actually es-

timating the bits from the query results. Methods based on bounded least squares

optimization are discussed elsewhere in this report, and illustrated by numerical

experiments. Here we provide an alternative approach, straightforwardly apply-

ing Bayesian inference to our Gaussian approximation. For simplicity, we discuss

here only the noiseless case, but the method is easily generalized to include noise.

The general idea is this. We choose a full n×n matrix W of query weights,

with detW nonzero. We then ask, after the first r < n of these queries (defined

by the first r columns of W ) have been posed and answered, what is the posterior

(conditional) probability distribution for the answers to the remaining n−r queries

that have not yet been made? If this posterior is narrow, the likely answers to the

not-yet-asked queries can be predicted with probable errors less than unity (i.e.,

less than a bit). Then, from the results of only the first r queries, we may write

down a shrewd estimate for the full n× n linear system discussed in Section A.1

and invert for the bits (rounding the real-valued answers to 0 or 1 as needed). If

on the other hand the posterior is not narrow enough, we increase r (i.e., ask more
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queries) until it is.

This procedure is in principle well-defined if the queries are treated exactly

as discrete binomial variables. But unfortunately we do not know how to make

the exact calculations except by brute force. So we resort to our Gaussian ap-

proximation. Let Xn be the full length-n vector of random variables for the

outcomes of all n queries defined by some n × n weight matrix Wn with en-

tries ∈ {0,1} and detWn �= 0. In the Gaussian approximation, the joint distri-

bution of Xn is determined by the means μn = E(Xn) and covariances Cn =

E
[
Xn −μn)(Xn −μn)

T ]. As in Section A.4, since we assume uniform pri-

ors on all of the database bits (0 or 1 with equal probability), each component

of mun equals one half the sum of the corresponding column of Wn, while

Cn =
1
4W

T
nWn.

Now partition Xn into its first r components Xr and the remaining n− r

components Xn−r, with corresponding partitions of the means and covariances:

μ=

[
μr

μn−r

]
, Cn =

[
Cr Cr,n−r

Cn−r,r Cn−r

]
(A-17)

Here

Cr = E(XrX
T
r )

represents the r× r covariances of the components of Xr among themselves, and

similarly for

Cn−r = E(Xn−rX
T
n−r);

while

Cr,n−r = E(XrX
T
n−r)

and its transpose

Cn−r,r = E(Xn−rX
T
r )

encode the r × (n − r) cross-correlations between the components of Xr and

Xn−r. As is well known,13 the conditional probability Pr(Xn−r|Xr =xr) is itself

13see, e.g., the Wikipedia article “Multivariate normal distribution” and references therein
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Gaussian, with means and covariances

μ̂n−r = μn−r +Cn−r,rC
−1
r (xr −μn−r)

Ĉn−r =Cn−r −Cn−r,rC
−1
r CT

n−r,r︸ ︷︷ ︸
Q

. (A-18)

Since the matrix Q is positive semidefinite, it follows that detĈ ≤ detCn−r, with

equality only if the cross correlations Cn−r,r vanish.

Importantly, the reduced covariance matrix Ĉ for the unposed n− r queries

does not depend on the results (Xr = xr) of the first r queries, so we can work it

out in advance in terms of the query weights Wn. This can be done explicitly when

Cn has the simple form (A-7), which we can obtain by choosing the columns of

W to be m sequences, or by choosing them at random and neglecting the resulting

O(
√

n) “fluctuations” in the resulting components of C [eq. (A-8)]. In this case,

Cr and Cn−r have similar forms, except that in each case, I and J are matrices

of the appropriate order.14 It’s clear that J2
k = kJk for every k, and therefore

(Ik +Jk)
−1 = Ik − 1

k+1
Jk

The off-diagonal matrix Cr,n−r =
n

16Jr,n−r, Jk,m being the k×m matrix with all

entries equal to 1 (so that Jk,k = Jk). By means of the rules

J j,kIk = J j,k and Ji,kJk, j = kJi, j

we can now evaluate the reduced covariance (A-18) for this choice of queries:

Ĉn−r =
n

16

(
In−r +

1

r+1
Jn−r

)
. (A-19)

The determinant of Ĉn−r is smaller than that of Cn−r =
n
16(In−r +Jn−r) by a

factor (2r+ 1)/(r+ 1)2 ≈ 2r−1 for r � 1. In logarithmic terms, this is a disap-

pointingly slight reduction in uncertainty.

14I.e., Ck =
n
16 (Ik +Jk), with Ik being the k× k identity, and Jk being the k× k matrix with all

elements equal to 1. The prefactor n
16 in Ck, however, is invariant.
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B MATLAB CODE FOR DN DATABASE RECON-
STRUCTION

The MATLAB codes in this appendix can be used to generate the various figures

in the report associated with the calculations on the Dinur-Nissim database.

Listing 1: Matlab script for Figure 5-1

1 % script to recover the bits in a Dinur−Nissim database without noise

addition

2

3 max_n_data = 1000;

4 min_n_data = 1000;

5 step_n_data = 10;

6

7 % number of random trials

8

9 n_trials = 100;

10

11 n_entry = floor((max_n_data−min_n_data)/step_n_data)+1;
12

13 n_q_recovery = zeros(1,n_entry);

14 n_d = zeros(1,n_entry);

15 n_q_norm = zeros(1,n_entry);

16

17 completion_counter_max = 10;% the consecutive number of times the min

fraction correct is 1 before terminating the queryloop

18

19 i_noise = false; % set to false for no noise addition

20

21 i_entry = 0;

22

23 i_fig = 0;

24

25

26 for n_data = min_n_data:step_n_data:max_n_data

27

28 % noise level − we add gaussian noise with mean 0 and variance

eta

29

30 sigma = sqrt(n_data)/2.0; % sigma for binomial distribution

31

32 eta = sigma*log(n_data); % ensuring the noise is just above the

sqrt(n) growth
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33

34

35 % query_fraction = linspace(1/n_data,1.0,query_max);

36

37 % generate random data set

38

39 d = randi([0,1],n_data,1);

40

41 options = optimset('display','off'); % turn off the display

42

43 % set the lower and upper bounds on the solution

44

45 lb = zeros(n_data,1);

46 ub = ones(n_data,1);

47

48 fraction_correct = zeros(n_trials,10000);

49

50 i_query = 0;

51

52 completion_counter = 0;

53

54 while (completion_counter < completion_counter_max)

55

56 i_query = i_query + 1;

57

58 max_fraction_corrrect = 0.0;

59 max_residual_norm = 0.0;

60

61 for i_trial = 1:n_trials

62

63 % generate the random query matrix

64

65 Q = randi([0,1], i_query, n_data);

66

67 % generate the query answers

68

69 ans_q = Q*d;

70

71 % add noise to the answers

72

73 rand_vec = normrnd(0,eta, [i_query, 1]);

74

75 if (i_noise)

76 ans_q = ans_q + rand_vec;

77 end
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78

79 % now use constrained least squares to generate solution

80

81 [x_sol,res_norm,residual,exitflag,output] = lsqlin(Q,

ans_q,[],[],[],[],lb,ub, [], options);

82

83 max_residual_norm = max(max_residual_norm, res_norm);

84

85 % now round to 0 or 1

86

87 x_sol = round(x_sol);

88

89 % compute the percentage of bits returned correctly

90

91 n_correct = 0;

92

93 for i_bit = 1:n_data

94 if (abs(x_sol(i_bit) − d(i_bit)) <= 1.0e−3)
95 n_correct = n_correct +1;

96 end

97 end

98

99 fraction_correct(i_trial, i_query) = n_correct/n_data;

100

101 end

102

103 max_fraction_correct = max(fraction_correct(:,i_query));

104 min_fraction_correct = min(fraction_correct(:,i_query));

105

106 if ((min_fraction_correct − 0.9) >= 0)

107 completion_counter = completion_counter + 1;

108 else

109 completion_counter = 0;

110 end

111

112 fprintf (' %5i trials n_data: %5i query: %5i comp_counter:

%5i min_fraction_correct %8.4e max_frac_correct %8.4e

max_residual: %8.4e \n', ...

113 n_trials, n_data, i_query, completion_counter,

min_fraction_correct, max_fraction_correct,

max_residual_norm)

114

115 end

116

117 n_query = i_query;
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118

119 % now compute the mean percent correct and its variance

120

121 mean_fraction_correct = mean(fraction_correct);

122 var_fraction_correct = var(fraction_correct);

123

124 % now find the least value of query number that provides 100

percent recovery

125

126 i_entry = i_entry+1;

127

128 n_d(i_entry) = n_data;

129

130 n_q_recovery(i_entry) = n_query;

131

132 for i = n_query:−1:1
133 if (abs(mean_fraction_correct(i) − 1) >= 1.0e−3)
134 n_q_recovery(i_entry) = i;

135 break;

136 end

137 end

138

139 % now produce a shaded distribution plot

140

141 x = 1:i_query;

142 y_mean = mean_fraction_correct(1:n_query);

143 y_10 = quantile(fraction_correct,0.10);

144 y_50 = quantile(fraction_correct,0.50);

145 y_90 = quantile(fraction_correct,0.90);

146

147 y_10 = y_10(1:n_query);

148 y_50 = y_50(1:n_query);

149 y_90 = y_90(1:n_query);

150

151

152 i_fig = i_fig+1;

153 figure(i_fig);

154 clf;

155

156 fprintf(' plotting figure %d...', i_fig);

157 hold on

158 plot(x,y_mean,'LineWidth',1.5);

159 plot(x,y_10);

160 plot(x,y_50);

161 plot(x,y_90);
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162 hold off

163 title(['fraction correct vs. query for ', num2str(n_data),' bits

with ',num2str(n_trials),' trials']);

164 drawnow;

165 fprintf (' plot complete\n')

166

167

168

169

170 end

171

172

173 % plot the min number of queries vs number of bits

174

175 i_fig = i_fig+1;

176

177 figure(i_fig);

178 clf;

179

180 plot (n_d(1:i_entry), n_q_recovery(1:i_entry));

181

182 drawnow;

183

184 % play with some possible normalizations of the min number of queries

185

186 for i_e = 1:i_entry

187 n_q_norm(i_e) = n_q_recovery(i_e)/n_d(i_e);

188 % n_q_norm(i_e) = n_q_recovery(i_e)/n_d(i_e);

189 end

190

191 i_fig = i_fig+1;

192 figure(i_fig);

193 clf;

194

195 plot(n_d(1:i_entry), n_q_norm(1:i_entry));
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Listing 2: Matlab script for Figures 5-2 and 5-3

1 % script to try to recover binary data set

2

3 max_n_data = 1000;

4 n_q_recovery = zeros(1,max_n_data);

5 n_d = zeros(1,max_n_data);

6 n_q_norm = zeros(1,max_n_data);

7

8 i_entry = 0;

9

10 for n_data = 100:100:max_n_data

11

12

13 max_query = n_data;

14 n_trials = 100;

15 query_percent = linspace(1/n_data,1.0,max_query);

16

17 % generate random data set

18

19 d = randi([0,1],n_data,1);

20

21 options = optimset('display','off'); % turn off the display

22

23 % set the lower and upper bounds on the solution

24

25 lb = zeros(n_data,1);

26 ub = ones(n_data,1);

27

28 percent_correct = zeros(n_trials,max_query);

29

30

31 for i_query = 1:1:max_query

32

33 fprintf (' n_data = %d Performing query %d with %d trials \

n', n_data, i_query, n_trials)

34

35

36 for i_trial = 1:n_trials

37

38 % generate the random query matrix

39

40 Q = randi([0,1], i_query, n_data);

41

42 % generate the query answers

43
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44 ans_q = Q*d;

45

46 % now use constrained least squares to generate solution

47

48 [x_sol,res_norm,residual,exitflag,output] = lsqlin(Q,

ans_q,[],[],[],[],lb,ub, [], options);

49

50

51 % now round to 0 or 1

52

53 x_sol = round(x_sol);

54

55 % compute the percentage of bits returned correctly

56

57 n_correct = 0;

58

59 for i_bit = 1:n_data

60 if (abs(x_sol(i_bit) − d(i_bit)) <= 1.0e−3)
61 n_correct = n_correct +1;

62 end

63 end

64

65 percent_correct(i_trial, i_query) = n_correct/n_data;

66

67 end

68

69 end

70

71 % now compute the mean percent correct

72

73 min_percent_correct = min(percent_correct);

74 mean_percent_correct = mean(percent_correct);

75 var_percent_correct = 2.0*var(percent_correct); % note I'm taking

2 std devs

76 max_percent_correct = max(percent_correct);

77

78 % now find the lowest value of the number of queries that

provides 100 percent recovery

79

80 i_entry = i_entry+1;

81

82 n_d(i_entry) = n_data;

83

84 n_q_recovery(i_entry) = max_query;

85
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86 for i = max_query:−1:1
87 if (abs(mean_percent_correct(i) − 1) >= 1.0e−3)
88 break;

89 else

90 n_q_recovery(i_entry) = n_q_recovery(i_entry) − 1;

91 end

92 end

93

94 % plot error bar plot

95

96 figure;

97

98 errorbar (mean_percent_correct, var_percent_correct)

99

100

101

102 end

103

104 % plot the min number of queries vs number of bits

105

106 figure;

107

108 plot (n_d(1:i_entry), n_q_recovery(1:i_entry));

109

110 % play with some possible normalizations of the min number of queries

−
111 % here we try direct proportionality to number of bits

112

113 for i_e = 1:i_entry

114 n_q_norm(i_e) = n_q_recovery(i_e)/n_d(i_e);

115 end

116

117 figure;

118

119 plot(n_d(1:i_entry), n_q_norm(1:i_entry));
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Listing 3: Matlab script for Figure 5-4

1 % script to examine the distribution of number of bits recovered for

a

2 % fixed number of random bits in a database

3

4 max_n_data = 10;

5 min_n_data = 100;

6 step_n_data = 10;

7

8 % number of random trials

9

10 n_trials = 100;

11

12 n_entry = floor((max_n_data−min_n_data)/step_n_data)+1;
13

14 n_q_recovery = zeros(1,n_entry);

15 n_d = zeros(1,n_entry);

16 n_q_norm = zeros(1,n_entry);

17

18 completion_counter_max = 10;% the consecutive number of times the min

fraction correct is 1 before terminating the queryloop

19

20 i_noise = true; % set to false for no noise addition

21

22 i_entry = 0;

23

24 i_fig = 0;

25

26

27 for n_data = min_n_data:step_n_data:max_n_data

28

29 % noise level − we add gaussian noise with mean 0 and variance

eta

30

31 sigma = sqrt(n_data)/2.0; % sigma for binomial distribution

32

33 eta = sigma*log(n_data); % ensuring the noise is just above the

sqrt(n) growth

34

35

36 % generate random data set

37

38 d = randi([0,1],n_data,1);

39

40 options = optimset('display','off'); % turn off the display
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41

42 % set the lower and upper bounds on the solution

43

44 lb = zeros(n_data,1);

45 ub = ones(n_data,1);

46

47 fraction_correct = zeros(n_trials,10000);

48

49 i_query = 0;

50

51 completion_counter = 0;

52

53 while (completion_counter < completion_counter_max)

54

55 i_query = i_query + 1;

56

57 max_fraction_corrrect = 0.0;

58 max_residual_norm = 0.0;

59

60 for i_trial = 1:n_trials

61

62 % generate the random query matrix

63

64 Q = randi([0,1], i_query, n_data);

65

66 % generate the query answers

67

68 ans_q = Q*d;

69

70 % add noise to the answers

71

72 rand_vec = normrnd(0,eta, [i_query, 1]);

73

74 if (i_noise)

75 ans_q = ans_q + rand_vec;

76 end

77

78 % now use constrained least squares to generate solution

79

80 [x_sol,res_norm,residual,exitflag,output] = lsqlin(Q,

ans_q,[],[],[],[],lb,ub, [], options);

81

82 max_residual_norm = max(max_residual_norm, res_norm);

83

84 % now round to 0 or 1
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85

86 x_sol = round(x_sol);

87

88 % compute the percentage of bits returned correctly

89

90 n_correct = 0;

91

92 for i_bit = 1:n_data

93 if (abs(x_sol(i_bit) − d(i_bit)) <= 1.0e−3)
94 n_correct = n_correct +1;

95 end

96 end

97

98 fraction_correct(i_trial, i_query) = n_correct/n_data;

99

100 end

101

102 max_fraction_correct = max(fraction_correct(:,i_query));

103 min_fraction_correct = min(fraction_correct(:,i_query));

104

105 if ((min_fraction_correct − 0.9) >= 0)

106 completion_counter = completion_counter + 1;

107 else

108 completion_counter = 0;

109 end

110

111 fprintf (' %5i trials n_data: %5i query: %5i comp_counter:

%5i min_fraction_correct %8.4e max_frac_correct %8.4e

max_residual: %8.4e \n', ...

112 n_trials, n_data, i_query, completion_counter,

min_fraction_correct, max_fraction_correct,

max_residual_norm)

113

114 end

115

116 n_query = i_query;

117

118 % now compute the mean percent correct and its variance

119

120 mean_fraction_correct = mean(fraction_correct);

121 var_fraction_correct = var(fraction_correct);

122

123 % now find the least value of query number that provides 100

percent recovery

124
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125 i_entry = i_entry+1;

126

127 n_d(i_entry) = n_data;

128

129 n_q_recovery(i_entry) = n_query;

130

131 for i = n_query:−1:1
132 if (abs(mean_fraction_correct(i) − 1) >= 1.0e−3)
133 n_q_recovery(i_entry) = i;

134 break;

135 end

136 end

137

138 % now produce a shaded distribution plot

139

140 x = 1:i_query;

141 y_mean = mean_fraction_correct(1:n_query);

142 y_10 = quantile(fraction_correct,0.10);

143 y_50 = quantile(fraction_correct,0.50);

144 y_90 = quantile(fraction_correct,0.90);

145

146 y_10 = y_10(1:n_query);

147 y_50 = y_50(1:n_query);

148 y_90 = y_90(1:n_query);

149

150

151 i_fig = i_fig+1;

152 figure(i_fig);

153 clf;

154

155 fprintf(' plotting figure %d...', i_fig);

156 hold on

157 plot(x,y_mean,'LineWidth',1.5);

158 plot(x,y_10);

159 plot(x,y_50);

160 plot(x,y_90);

161 hold off

162 title(['fraction correct vs. query for ', num2str(n_data),' bits

with ',num2str(n_trials),' trials']);

163 drawnow;

164 fprintf (' plot complete\n')

165

166

167

168
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169 end

170

171

172 % plot the min number of queries vs number of bits

173

174 i_fig = i_fig+1;

175

176 figure(i_fig);

177 clf;

178

179 plot (n_d(1:i_entry), n_q_recovery(1:i_entry));

180

181 drawnow;

182

183 % play with some possible normalizations of the min number of queries

184

185 for i_e = 1:i_entry

186 n_q_norm(i_e) = n_q_recovery(i_e)/n_d(i_e);

187 % n_q_norm(i_e) = n_q_recovery(i_e)/n_d(i_e);

188 end

189

190 i_fig = i_fig+1;

191 figure(i_fig);

192 clf;

193

194 plot(n_d(1:i_entry), n_q_norm(1:i_entry));
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Listing 4: Matlab script for Figure 6-6

1 % script to examine the accuracy of a sum query as a function of the

value

2 % of epsilon

3

4 n_data_row = [100 200 500 1000 2000 5000];

5

6 % number of random trials

7

8 n_trials = 1000;

9

10 trial_result = zeros(n_trials,1);

11

12 % the set of privacy loss parameters we wish to examine

13

14 eps_row = [0.001 0.005 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.3 0.4 0.5

0.6 0.7 0.8 0.9 1.0 ];

15

16

17 n_d_entry = length(n_data_row);

18 n_e_entry = length(eps_row);

19

20

21 query_accuracy = zeros(n_d_entry, n_e_entry); %

22

23

24 for i_d_entry = 1:n_d_entry % loop over the values of the number of

bits

25

26 n_data = n_data_row(i_d_entry);

27

28 fprintf (' number of data bits: %d \n ', n_data);

29

30 for i_e_entry = 1:n_e_entry % loop over the values of epsilon

31

32 epsilon = eps_row(i_e_entry);

33

34 % noise level − we add gaussian noise with mean 0 and

variance eta

35

36 eta = 2/epsilon^2; % this sets the variance to the

equivalent of the two sided exponential

37

38 for i_trial = 1:n_trials % do a number of trials to get
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reasonablre statistics

39

40 % generate random data set

41

42 d = randi([0,1],n_data,1);

43

44 % compute the correct sum

45

46 sum_query = sum(d);

47

48 % add noise to the sum of the data set − here we add a

Laplace

49 % distribution with parameter epsilon

50

51 unif = rand() − 0.5;

52 laplace_rand_var = −1./epsilon*sign(unif)*log(1−2*abs(
unif));

53

54 % rand_num = normrnd(0,sqrt(eta), [1, 1]);Q_n

55

56 rand_num = laplace_rand_var;

57 noised_sum = round(sum_query + rand_num);

58

59 trial_result(i_trial) = 1.0 − abs((noised_sum−sum_query)
/sum_query); % accuray − 1 is perfect and then it

decreases as error decreases

60

61 end

62 mean_error = mean(trial_result);

63

64 fprintf (' epsilon = %d variance = %d mean_error=%d\n',

epsilon, eta, mean_error);

65

66 query_accuracy(i_d_entry,i_e_entry) = mean_error;

67

68 end

69

70 end

71

72

73

74 % now plot the results

75

76 figure;

77

JSR-19-2F 2020 Census 133 March 29, 2020



78 hold on

79

80 for i_curve = 1:n_d_entry

81

82 x = eps_row;

83

84 y = query_accuracy(i_curve, 1:n_e_entry);

85

86 plot (x,y);

87

88 end

89

90 % set the axes − anything below a query accuracy of 0.0 is pretty

useless

91 axis([0 1.0 0 1.01]);

92

93 % form the legend

94

95 for i_curve = 1:n_d_entry

96 legendCell{i_curve} = num2str(n_data_row(i_curve), 'N =%−d');
97 end

98

99 legend(legendCell);

100

101 % label the axes

102

103 xlabel('Privacy loss parameter − \epsilon');

104 ylabel('Query accuracy');

105

106 % title the plot

107

108 title(' Dinur−Nissim query accuracy vs privacy loss parameter \

epsilon');
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Listing 5: Matlab script for Figure 6-7

1

2 % Matlab script to examine what percentage of bits are recovered for

a given

3 % privacy loss parameter and a given number of queries in the

presence of

4 % noise. We use a two−sided Laplace distribution to sample the noise.

5

6 % the set of database size we wish to examine

7

8 n_data_row = [4000];

9

10 % number of random trials

11

12 n_trials = 10;

13

14 trial_fraction_correct = zeros(n_trials,1);

15

16 % the set of privacy loss parameters we wish to examine

17

18 eps_row = [ 0.01 0.02 0.03 0.04 0.05 0.1 0.2 0.25 0.3 0.4 0.5 1.0 ];

19

20 % the set of multiples of the number of data points we have that we

wish to examine

21

22 n_mult_row = [1 5 10 20];

23

24 n_d_entry = length(n_data_row);

25 n_e_entry = length(eps_row);

26 n_m_entry = length(n_mult_row);

27

28 options = optimset('display','off'); % turn off the display for the

optimizer

29

30 % array of fraction of number of bits correct as a function of number

of bits, number of queries, and epsilon

31 fraction_correct = zeros(n_d_entry, n_m_entry, n_e_entry);

32

33 % loop over the values of the number of bits

34 for i_d_entry = 1:n_d_entry

35

36 n_data = n_data_row(i_d_entry);

37

38 fprintf (' number of data bits: %d \n ', n_data);

39
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40 % set the lower and upper bounds on the solution

41

42 lb = zeros(n_data,1);

43 ub = ones(n_data,1);

44

45 % generate random data set

46

47 d = randi([0,1],n_data,1);

48

49 % loop over the values of epsilon

50 for i_e_entry = 1:n_e_entry

51

52 epsilon = eps_row(i_e_entry);

53

54 % noise level − we add Laplce noise with mean 0 and variance

eta

55 % this sets the variance to the equivalent of the two sided

exponential

56 eta = 2/epsilon^2;

57

58 fprintf (' epsilon = %d variance = %d \n', epsilon, eta)

;

59

60 % loop over the queries − we do various multiples of the

number of

61 % data points

62

63 for i_m_entry = 1:n_m_entry

64

65 i_query = n_data*n_mult_row(i_m_entry);

66

67 % we do n_trials trials and average the results

68

69 max_residual_norm = 0;

70

71 for i_trial = 1:n_trials

72

73 % generate the random query matrix

74

75 Q = randi([0,1], i_query, n_data);

76

77 % generate the query answers

78

79 ans_q = Q*d;

80
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81 % add noise to the answers

82

83 % add noise to the sum of the data set − here we add

a Laplace

84 % distribution with parameter epsilon

85

86 unif = rand(i_query,1) − 0.5;

87 laplace_rand_var = −1./epsilon.*sign(unif).*log(1−2*
abs(unif));

88

89 ans_q = ans_q + laplace_rand_var;

90

91 % now use constrained least squares to generate

solution

92

93 [x_sol,res_norm,residual,exitflag,output] = ...

94 lsqlin(Q,ans_q,[],[],[],[],lb,ub, [], options);

95

96 max_residual_norm = max(max_residual_norm, res_norm);

97

98 % now round to 0 or 1

99

100 x_sol = round(x_sol);

101

102 % compute the percentage of bits returned correctly

103

104 n_correct = 0;

105

106 for i_bit = 1:n_data

107 if (abs(x_sol(i_bit) − d(i_bit)) <= 1.0e−3)
108 n_correct = n_correct +1;

109 end

110 end

111

112 trial_fraction_correct(i_trial) = n_correct/n_data;

113

114 end

115

116 max_fraction_correct = max(trial_fraction_correct);

117 min_fraction_correct = min(trial_fraction_correct);

118 mean_fraction_correct = mean(trial_fraction_correct);

119 var_fraction_correct = var(trial_fraction_correct);

120

121 fprintf (' n_data: %5i query: %5i

mean_fraction_correct %8.4e max_residual: %8.4e \n',
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...

122 n_data, i_query, mean_fraction_correct,

max_residual_norm)

123

124 fraction_correct(i_d_entry,i_m_entry,i_e_entry) =

mean_fraction_correct;

125

126 end

127 end

128 end

129

130 % now plot the results

131

132 [X, Y] = meshgrid(n_mult_row, eps_row);

133

134 % loop over the size of the data vector

135

136 Z = zeros(n_e_entry, n_m_entry);

137

138 for i_d_entry = 1:n_d_entry

139

140 for i_e_entry = 1:n_e_entry

141

142 for i_m_entry = 1:n_m_entry

143

144 Z(i_e_entry, i_m_entry) = fraction_correct(i_d_entry,

i_m_entry, i_e_entry); % load the array of results for

each data set size

145 end

146

147 end

148

149 figure;

150 surf(X,Y,Z);

151 set(gca,'XScale','linear')

152 set(gca,'YScale','linear')

153

154 end
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